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1	INTRODUCTION	

	
Global food safety is a key problem universally 
due to changes in global climate conditions 
besides the rise in population [1,2]. The global 
necessity for improved agricultural productivity 
on marginal rainfed lands is crucial for addressing 
present and future food security challenges. The 
impact of climate change, characterized by 
heightened variability and fluctuation in 
hydrological  

 
 
 
 

 
 
 
 
 
 
 
patterns, poses a significant threat to agricultural  
practices, particularly in developing countries. 
This phenomenon exacerbates various abiotic 
stress factors for plants [3]. Heat, drought, stress, 
and salinity significantly affect plant production 
and yield [1,2]. Drought is an essential and major 
limitation among the abiotic factors. Drought 
stress impacts about one-third of all agricultural 
land globally. Within this affected area, emerging 

 Drought significantly reduces water availability, negatively affecting critical plant processes and 
reducing crop productivity. This has serious economic consequences, especially in regions that 
rely heavily on agriculture. Plants respond to drought stress through intricate biological 
mechanisms, including changes in metabolite profiles and gene expression, which help 
mitigate damage and maintain functionality. 
Central to these responses are transcription factors, which regulate stress-responsive gene 
expression by mediating signal transduction pathways. Their role is pivotal in linking 
drought signals to physiological and molecular adaptations. Understanding these complex 
networks of physiological, metabolic, and gene regulatory responses is essential for 
developing crops with improved drought resilience. 
 Marker-assisted selection (MAS) provides a more efficient method for assessing the value 
of various genomic regions in crops under stress conditions. Numerous crops contain 
quantitative trait loci (QTLs) linked to drought tolerance and other traits. The development 
of detailed molecular linkage maps and MAS techniques has enabled the integration of 
favorable characteristics, enhancing agricultural resilience to drought. Despite these 
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This review incorporates insights into signal transduction for developing drought-resistant 
crop cultivars or lines. It also explores recent progress in understanding transcription factors 
(TFs), with a particular focus on their role in orchestrating plant responses to abiotic stress. 
Additionally, it delves into novel molecular mechanisms underlying their function in stress 
conditions. These insights are crucial for understanding regulatory processes and developing 
stress-resistant crop varieties. 
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countries account for 33%, developed countries 
represent 25%, and underdeveloped countries 
comprise 42%.[4]. The Intergovernmental Panel 
on Climate Change (IPCC) has determined that the 
increased concentration of greenhouse gases is 
likely to cause the subtropical regions to become 
drier by the end of the century, resulting in 
widespread drought stress in agriculture [5]. 
Approximately 75% of the world's water 
consumption is at risk due to this global water 
shortage, with irrigation accounting for more than 
90% of water use in several developing nations [6]. 
 
Plants are generally more vulnerable to extreme 
environmental conditions compared to other living 
organisms. They tend to suffer adverse effects 
when exposed to high levels of environmental 
stress, which can negatively impact their 
biochemical and physiological processes [7]. 
Every stage of plant growth, from seed 
germination to plant maturity, depends on water, 
and the lack of it is the main cause of diminished 
plant productivity by disrupting crucial 
morphological and biochemical processes [17,18], 
which significantly causes decreases in food 
production, which has significant socioeconomic 
repercussions over the world [8].  Hence, in 
agriculture, drought refers to a period 
characterized by a scarcity of precipitation, 
resulting in impaired crop growth and diminished 
yields due to either poor rainfall or heightened 
evaporation rates [9-16]. Furthermore, drought 
conditions can also negatively impact crop 
production and plant yield by as much as 50%. 
[19,20], especially in the reproductive stages of 
plants which are generally more susceptible to 
stress, and which can have a significant impact on 
the yield of numerous important plant species [21]. 
A reduction in water content by up to 40% has 
been shown to result in a significant decrease in 
the yield of both wheat and maize, with reductions 
of up to 40% and 21%, respectively [22,23]. For 
example, the production of cowpeas can be 
significantly impacted by drought stress, with a 
reduction of up to 68% [24]. 40% of soybean yield 
loss is caused by drought stress [25].  It also slows 
down cell division, expands the surface area of the 
leaves, curtails stem growth, and impedes root 
propagation [26].  
 

Stresses such as drought and salinity affect the 
productivity of most field crops to variable 
degrees, depending on the onset time, duration, 
and intensity of the stress [27]. Rice (Oryza 
sativa), one of the most important food crops in the 
world, is very sensitive to drought stress because 
of its limited adaptation to water-deficit conditions 
[28,29]. The impact of drought stress on rice seed 
germination and seedling growth can be observed 
through changes in the plant's early morphology 
[24,30-31]. Significant decreases in germination 
rates and seedling growth are typically seen in 
conditions of drought stress (DS) [32]. Maize, 
another essential crop (Zea mays), is highly 
susceptible to water-deficit stress. The soil's water 
supply heavily influences its pollination and 
embryo development processes during and after 
flowering [22,33]. In addition, drought disrupts the 
water balance and impairs the cellular level's 
metabolic process, including respiration and ATP 
production, ultimately affecting membrane 
transport. These consequences can result in poor 
seed germination [30]. 
 
Plant drought resistance includes four major 
mechanisms: drought avoidance (DA) (or ‘‘shoot 
dehydration avoidance’’ in some literature), 
drought tolerance (DT), drought escape (DE), and 
drought recovery (DR).  Plants respond to drought 
stress by producing a variety of stress signals, 
which are processed and interpreted by their 
defense systems. To manage drought stress, plants 
employ a range of strategies that can be broadly 
categorized into morphological, physiological, 
biochemical, and molecular responses. These 
mechanisms help plants survive and reproduce 
under water-limited conditions. One of the 
structural changes in plants that are critical to 
responding to drought stress ranges from 
morphological adaptations (decline in growth rate, 
deep rooting system, and modification of root-to-
shoot ratio for desiccation avoidance) [34,35]; as 
well as physiological and metabolic responses 
[36]; include reduced Transpiration by closing 
stomata [37, 38]. Osmotic adjustments include the 
accumulation of osmolytes like proline, sugars, 
and ions [39]; to maintain cell turgor and prevent 
dehydration.  
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Furthermore, biochemicals are one of the 
strategies of plant's defense by enhancing the 
activity of enzymes like superoxide dismutase 
(SOD), catalase (CAT), and peroxidases to 
mitigate oxidative damage caused by reactive 
oxygen species (ROS) [40,41]. Also, increased 
levels of abscisic acid (ABA) signal stomatal 
closure and initiate other stress responses [42].  
Signaling pathways by activation of signaling 
molecules like calcium ions (Ca²⁺), nitric oxide 
(NO), and reactive oxygen species (ROS) to 
coordinate stress responses [43].  
 
In addition, one of the most significant strategies 
to face drought stress is the molecular response 
that includes Stress-Responsive Genes, such as the 
upregulation of dehydration-responsive element-
binding (DREB) and other transcription factors 
that regulate drought-tolerance genes [44]. Also, 
the production of protective Proteins, for example, 
synthesis of heat shock proteins (HSPs) [45], late 
embryogenesis abundant (LEA) proteins [46], and 
aquaporins to protect cells and facilitate water 
transport.  
 
This study offers valuable insights into the critical 
changes and mechanisms that plants employ to 
adapt to and withstand drought stress across 
multiple levels. It emphasizes the significant 
alterations occurring at the morphological, 
biochemical, and molecular levels. By identifying 
key genes and characterizing the unique features 
of genetic regulatory networks, the review sheds 
light on how plants coordinate their responses to 
drought. In addition, it provides comprehensive 
and a deeper understanding of the intricate 
processes that underlie plant adaptation, including 
the regulation of gene expression, signal 
transduction pathways, and the activation of 
stress-responsive metabolic and physiological 
pathways. 
	
Physiological and Morphological Responses to 
Drought Stress 
The ability of a plant to achieve its maximum 
economic yield despite water shortage is referred 
to as drought resistance [16]. To resist drought, 
plants have developed a wide range of 
morphological and physiological response 
mechanisms. As explained by (Kumar et al, 2016) 

,it is a trait that is influenced by a multitude of 
factors, including morphological, biochemical, 
and physiological responses that are 
interconnected and subject to change [47]. There 
are two avoidance strategies that plants employ 
often referred to as water-saving and water-
spending strategies. These strategies include 
"drought tolerance" (i.e., the capacity to sustain 
physiological processes at decreasing leaf water 
potentials) and "drought avoidance" (i.e., the 
capacity to prevent or delay the decline of leaf 
water potential during drought) [10,48,49]. 
According to (Benjamin and Nielsen,2006) [50]; 
(Praba et al., 2009) [51], drought stress 
significantly impacts various physiological and 
biochemical characteristics, including growth, 
yield, membrane integrity, pigment composition, 
osmotic adjustment, water relations, and 
photosynthetic activity. Among its primary effects 
are impaired seed germination and poor stand 
establishment [52]. One of the physiological traits 
is osmotic adjustment, a low turgor loss point, and 
reduced susceptibility to cavitation are critical 
factors contributing to drought tolerance [48]. On 
the other hand, drought-resistant plants may rely 
on water-conservation mechanisms, including 
traits like early stomatal closure and foliar 
abscission [48, 53], or on traits that enhance water 
acquisition, such as the development of deep root 
systems and elevated plant hydraulic conductivity, 
enabling rapid water uptake from the soil to 
compensate for transportation water losses [54, 
55]. 
Additionally, reducing turgor pressure under 
drought conditions severely impacts cell 
development, one of the most sensitive 
physiological processes. Cell growth, driven by 
mitotic activity in meristematic regions and 
subsequent proliferation of daughter cells, is 
disrupted under severe water deficits due to 
inhibited water transport from the xylem to 
elongating cells, thereby restricting cell elongation 
[56]. This disruption results in impaired cell 
elongation and expansion, ultimately reducing 
growth and yield-related traits. Additionally, 
defective mitotic processes under drought stress 
further contribute to these developmental 
impairments [8]. 
 
Numerous investigations have identified 
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characteristics that appearance or presence is 
connected to a plant's capacity to withstand 
drought. Among them, characteristics like small 
plant measurement, small leaf area, early maturity, 
and delayed stomatal closure diminish the 
potential yield and total seasonal transpiration 
[57,58]. 
Decreased soil water potential leads to a reduction 
in both the number of leaves per plant and the size 
and lifespan of individual leaves. Leaf expansion 
is influenced by factors such as temperature, the 
availability of growth resources, and leaf turgor 
pressure.  
(Rucker et al, 1995) claimed that drought-induced 
reductions in leaf areas are caused by a reduction 
in photosynthesis, which inhibits leaf development 
[59]. According to (Zhu et al., 2020) the decreased 
water potential that results from drought stress is 
the cause of the decrease in leaf growth [60]. The 
impairment of water transportation from the xylem 
to another cell, as a result of inadequate water 
supply and subsequent reduction in turgor 
pressure, can lead to suboptimal growth of cells 
and reduced leaf area in plants [8]. The anatomical 
structure and ultra-structure of a leaf undergo 
modifications in response to drought stress, as 
observed by [61]. The reported modifications 
include a decrease in leaf size, a reduction in 
stomata count, the development of a thick cell 
wall, the occurrence of cutinization on the leaf 
surface, and suboptimal growth of the conducting 
system [16]. 
  
The growth-related characteristics of maize, 
including plant height, leaf area, number of leaves 
per plant, cob length, and shoot fresh and dry 
weight per plant, have been significantly affected 
by the drought. Additionally, (Kamara et al, 2003) 
revealed a lack of water at different phases of 
maize growth decreased the amount of biomass 
accumulated during the grain-filling stage by 34%, 
at maturity by 21%, and at the silking stage by 
37%[62]. Furthermore, shortage of water leads to 
a substantial decrease in crop plant yield traits, 
most likely due to a disruption in the properties of 
leaf gas exchange, which limits the size of source 
and sink tissues and reduces phloem loading, 
assimilate translocation, and dry matter portioning 
[63]. The main way that drought stress reduces the 
formation of dry matter is by preventing the 

growth and development of leaves, which in turn 
results in less light being intercepted [64]. Also, 
stomatal closure is caused by low water content in 
the soil, plant yield and production components 
may be diminished during drought [65- 67]. 
Numerous studies have demonstrated that stomata 
or non-stomatal mechanisms reduce 
photosynthetic activity under drought stress [68-
70]. Stomata are primarily responsible for water 
loss and CO2 absorbability, and one of the first 
responses to drought stress is stomatal closure, 
which reduces the rate of photosynthesis by 
depriving the leaves of CO2 and reducing 
photosynthetic carbon absorption in favor of 
photorespiration [71]. 
It is generally agreed that there is an extensive 
correlation between leaf water status and stomatal 
conductance. Even when there is drought stress, 
there is always transpiration conductance and leaf 
water potential. It is now apparent that stomatal 
closure is the consequence of drought-induced 
root-to-leaf communication, which is facilitated by 
soil drying through the transpiration stream. The 
"non-stomatal" mechanisms include modifications 
to the synthesis of chlorophyll, structural and 
functional alterations in chloroplasts, and 
disruptions to the assimilate accumulation, 
transport, and distribution processes [68-70].  
A typical outcome of drought during blossoming 
is barrenness. Reduced assimilate flow to the 
developing ear below a threshold level required to 
maintain good grain development was a significant 
contributing factor, however, it was not the only 
one [72]. 
 
Moreover, two significant traits that are commonly 
observed in plants under drought stress include 
leaf rolling and the onset of early senescence [73]. 
Many leaf attributes have been employed to 
evaluate varieties with drought tolerance, 
including greater flag leaf area, leaf area index, 
leaf water content relative to the weight of the dry 
matter, and leaf pigment content [63,8,31]. In 
another study, it has been reported that several 
cereal crops exhibit certain morphological traits to 
cope with drought conditions, such as rolling their 
leaves, expanding green flag leaf area, becoming 
glaucous, displaying increased shoot vigor, 
exhibiting stomatal conductance, utilizing 
transpiration cooling, maintaining membrane 
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stability, maturing early, displaying root vigor, and 
adopting specific architectural features [74]. 
Although crop plants have developed various 
physiological mechanisms to cope with drought, 
their specific strategies include adjusting their 
osmoprotectant accumulation, chlorophyll 
content, photosynthetic rate, Table. 1 ABA 
accumulation, soluble sugar content, and 
generation of reactive oxygen species (ROS) [75]. 
 
One of the essential features of plants is the roots 
are crucial for improving crop yield in dry 
conditions. The formation and composition of the 
rice root system are crucial in determining the 
function of crops under water stress. The amount 
of rice produced under conditions of water scarcity 
can be predicted by considering the dry mass of the 
roots and their length [76]. A wide range of 
responses were observed concerning root growth 
characteristics in the presence of water stress. 
According to (Manivannan et al, 2007), an 
increase in the length of rice roots was noticed 
during drought stress due to the elevation of 
abscisic acid concentration in the roots [77]. 
Typically, rice varieties with deep and extensive 
root systems are more resilient to drought 
conditions [78, 79]. Rice genotypes with deep and 
widespread root systems, coarse roots, the capacity 
to produce many branches, and a high ratio of roots 
to shoots are strongly associated with drought 
tolerance [79]. The morphophysiological traits of 
rice roots significantly influence shoot growth and 
overall grain yield in conditions of drought stress, 
as demonstrated by (Kim et al., 2020) [79]. 
	
Photosynthesis Responses to Drought Stress 
Photosynthesis is a central metabolic process that 
plays a significant role in determining the growth 
and production of crops. It is also affected by water 
deficit or drought stress, which can alter the 
normal rate of photosynthesis and the 
characteristics of gas exchange in plants [60]. 
Under the environmental conditions of limited 
water, stomata close, which reduces the amount of 
carbon dioxide entering leaves, leading to a need 
for additional electrons to produce reactive oxygen 
species [63, 80]. The decline in photosynthesis is 
influenced by various factors including diminished 
leaf gas exchange, a drop in turgor pressure, 
reduced CO2 assimilation, and stomatal closure 

Table. 1. These elements ultimately harm the 
photosynthetic apparatus, as shown by research 
[60,63,81]. The ability of leaves to carry out 
photosynthesis and the accessibility of water to the 
root zone are crucial elements that can negatively 
impact yield in susceptible rice varieties when 
exposed to drought stress. These factors play a 
significant role in the growth and development of 
rice plants, particularly during periods of water 
scarcity [60]. Drought stress leads to disparities in 
the acquisition and utilization of light, as well as 
diminution and impairment of Rubisco activity, 
pigments, and photosynthetic machinery  [63], 
which results in a decline in photosynthesis. Water 
stress adversely affects the normal functioning of 
PSI and PSII [31, 82] 
The function of PSII is crucial for the process of 
reducing substances and creating ATP. Numerous 
in vivo investigations have shown that drought can 
cause a significant decrease in the oxygen 
evolution centers of photosystems, leading to the 
inhibition of the electron transport chain and the 
eventual inactivation of PSII [31,80]. Chlorophyll, 
which is a type of plant pigment, is essential for 
photosynthesis, as it helps capture light and 
produce reducing powers [78]. Water scarcity 
results in a decrease in the capacity of mesophyll 
cells to utilize the carbon dioxide present in the 
atmosphere. Consequently, the quantity of 
functional chlorophyll decreases Table. 1 [83]. 
In rice plants subjected to water stress, the 
decrease in chlorophyll levels and the lowest 
amount of photosystem II (PSII) quantum yields 
(Fv/Fm) are reported [31,60,80] Carotenoids, 
which are crucial for photoprotection, are also 
utilized as precursors in guiding growth signals for 
plants in stressful conditions. As a result, 
researchers in plant biology are currently giving 
special attention to increasing carotenoid levels in 
plants through breeding or genetic engineering 
[84]. 
  
Signal transduction pathways and Metabolic 
Responses 
This stress triggers a series of responses, such as 
the recognition of water shortage, initiation of 
signaling pathways, and adjustments in 
transcription, metabolism, and regulatory 
components, all of which contribute to enhancing 
the plant's resilience against drought stress [85]. 
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Environmental droughts are detected by sensors 
that are membrane-bound to identify 
environmental drought conditions. This detection 
initiates various signal transduction pathways, 
ultimately activating drought-responsive genes. 
These genes encode proteins that confer 
appropriate functions and enhance tolerance to 
drought stress. [86,87]. Integral membrane 
proteins, including membrane-anchored receptor-
like kinases (RLKs), channels, and other 
transporters, may be able to detect this alteration. 
Key cascading events are associated with reactive 
oxygen species (ROS) and calcium ions (Ca2+). 
Various plant hormones, including salicylic acid 
(SA), jasmonic acid (JA), abscisic acid (ABA), 
and ethylene (ET), act as powerful secondary 
messengers that coordinate signal transduction 
pathways during stress responses. These signaling 
molecules initiate multiple concurrent 
transduction cascades, which often involve the 
contribution of protein kinases and phosphatases 
[88]. However, it is technically very difficult to 
show that a protein or other macromolecule acts as 
a sensor for a physical signal (such as a change in 
temperature, ion concentration, or osmotic 
pressure), and even for commonly used 
osmosensors or temperature sensors in bacterial, 
yeast, or mammalian systems, there is no direct 
experimental evidence. 
 
A wide range of metabolites can hyper accumulate 
in plants as a result of environmental stressors such 
as drought, salt, and high temperatures [89,90]. 
Plants produce primary metabolites (PMs) and 
secondary metabolites (SMs) to combat a range of 
adverse physiological changes brought on by 
stresses [91-93]. The growth and development of 
plants depend on metabolites, which are involved 
in cell signaling, energy storage, membrane 
construction, scaffolding, and the distribution of 
resources across the entire plant under stress [94]. 
Plant metabolism is disrupted by drought for a 
variety of reasons, including the inhibition of 
metabolic enzymes, a lack of substrate, an excess 
of demand for certain chemicals, and many more 
[95]. 
 
Several analyses have advanced our knowledge of 
how many plant species regulate their metabolites 
in response to various environmental stressors, 

such as drought, salt, heat, cold, and light stress 
[96,97]. Methodologies for metabolite profiling 
have been widely utilized to assess metabolite 
levels in a specific metabolite class or pathway to 
describe the biochemical responses to DS in plants 
[98,99].  
The analytical techniques employed to identify 
specific categories of metabolites in different plant 
species under DS include high-performance liquid 
chromatography (HPLC), nuclear magnetic 
resonance (NMR), liquid chromatography-mass 
spectrometry (LC-MS), capillary electrophoresis-
mass spectrometry (CE-MSgas),and  
chromatography-mass spectrometry (GC-MS) 
[100,101]. Metabolomic studies can relate the 
genotypic and phenotypic alterations in plants 
during DS and explore and identify important 
distinctions between DS-tolerant and DS-sensitive 
plant species/genotypes [102]. 
 
Plant development processes, photosynthesis, and 
respiration depend on primary metabolites such as 
sugars, polyols, amino acids, and lipids, which also 
help plants adapt to and recover from drought stress 
[103]. Under drought circumstances, they are crucial 
for preserving osmotic balance, managing ion 
transport, stabilizing cell membranes, and controlling 
cell turgor pressure [104]. During DS, Z. mays's 
glutathione and urea cycles, as well as its 
metabolism of carbohydrates and fats, are essential 
for osmoprotection, membrane upkeep, and 
antioxidant defense [105]. 
There are two primary approaches to 
comprehending metabolic reprogramming in 
plants under abiotic stress: non-targeted and 
targeted [106-108]. The most prevalent 
metabolites in plants under different 
environmental stressors are summarized using 
non-targeted metabolomics. When plants are 
subjected to different environmental stressors, 
targeted metabolomics finds, quantifies, and 
examines known [109,110]. The significance of 
metabolic reprogramming, including the control 
and buildup of PM and SM levels in plants under 
DS and biotechnological implications for DS 
management of agricultural crop plants, may 
therefore be demonstrated by metabolomics 
investigations [111,112]. 
Glycine and myoinositol levels were reported to be 
significantly correlated with grain yield by Obata 
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et al, 2015 [113], who used GC-MS to investigate 
the leaf blade tissue of Z. mays under DS.  
In Zea mays [114] and Oryza sativa, trehalose 
levels decreased. Sugar alcohols (arabitol and 
galactitol) and sugars (glucose, galactose, fructose, 
and maltose) accumulated in Lotus japonicus 
during DS [114]. Sugars (fructose, cellobiose, 
galactose, lactose, and sedoheptulose) and sugar 
alcohols (myoinositol, ribitol, and xylitol) were 
significantly upregulated in Samsorg 17 compared 
to Samsorg according to  Ogbaga et al (2016)'s 
study of two drought-contrasting sorghum 
(Sorghum bicolor) cultivars (Samsorg 17 and 40) 
under DS [114].  
 Differential accumulation of metabolites occurred 
in two drought-contrasting chickpeas (Cicer 
arietinum L.) genotypes using the UPLC-HRMS-
based untargeted metabolic profiling approach 
[115]. Other PMs (such as proline, arginine, 
histidine, isoleucine, and tryptophan) increased in 
the tolerant chickpea variety's leaves under DS, but 
both genotypes had decreases in alanine, 
ketoglutaric acid, GABA, choline, tyrosine, 
glucosamine, adenosine, guanine, and aspartic 
acid  [115]. In comparison to control plants, wheat 
(Triticum aestivum) subjected to DS has higher 
levels of several vital metabolites, including 
sugars, AAs, and GABA [116]. Likewise, in 
response to DS, wheat genotypes that were 
drought-tolerant and drought-sensitive showed 
elevated levels of proline, methionine, lysine, and 
arginine contents [117]. One or more of Hordeum 
vulgare's organs showed a notable production of 
metabolites under DS [118]. During DS, proline 
increased in all organs (fifth leaf, awn, lemma, and 
palea), but valine was markedly elevated in the 
fifth leaf, awn, and lemma [118]. Although the 
majority of research has proven the involvement of 
amino acids as osmoprotectants, additional 
metabolites such as organic acids, sugars, and 
phenolic compounds have been suggested to be 
important for abiotic stress in a variety of plants 
[119,120]. While proline catabolism improves 
during stress recovery, proline synthesis generally 
seems to be activated by stressful situations [121]. 
 
 
 
 
 

 
Table 1 Physiological and biochemical responses of 
plants under drought stress (modified Kumar, 2018) 
[122] 
No. Plant traits Yield-related 

effects on plant 
Variation in stress Ref. 

1 Plant dry 
weight, total 
leaf area, and 
net 
photosynthesis 
production 
 

After being 
watered, to restore 
the net 
photosynthesis 
 

Cultivars that are 
resistant to drought 
stress 
 

[123] 

2 Osmolality, 
and amino 
acid 
 

Under stress, 
alterations in plant 
metabolism and 
water potential 
result in a reduction 
in yield. 
 

Water shortage raises 
amino acid and 
osmolality levels. 
 

[124] 

3 The actions of 
peroxidase 
and electrolyte 
loss 
 

lower emerging 
success and an 
increase in water 
stress 
 

Chlorophyll and 
relative water content 
fall under stress, 
whereas phenol and 
peroxidase activity rise. 
 

[125] 

4 The amount of 
chlorophyll 
and membrane 
stability 
 

decreased total 
carotenoid 
concentration, 
relative water 
content, and 
membrane stability 
across all cultivars, 
but total chlorophyll 
content rose. 
 

Pod development stage 
water deficiency stress 
was shown to be more 
harmful than pegging 
stage stress. 
 

[126] 

5 Antioxidative 
enzymes, 
relative water 
content in the 
leaves, and 
root water 
absorption 
 

Under water stress 
conditions, it 
increases tuber 
production and 
antioxidative 
enzyme activity. 

Certain cultivars 
exhibit increased 
drought resistance 
while under stress. 
 

[127] 

6 Degree of 
transpiration 
 

Variability in 
stomatal 
conductance and 
leaf area 

Tolerance is rare in 
landrace species. 
 

[128] 

7 Rate of 
photosynthesis 
and isotopes 
of carbon in 
leaves 
 

Stomatal 
conductance 
enhances water-use 
efficiency. 
 

Improve the ability to 
tolerate water deficits 
 

[129] 

8 Grain yield, 
leaf area 
index, and 
relative water 
content 
 

In a chosen 
genotype, total 
biomass and yield 
increase during 
water deficiency 
 

Adaptable to stress 
from water shortage 
 

[130] 

9 Efficiency of 
consumption 
of water 

Average yield 
increase during the 
case of a water 
deficiency 

Drought tolerant [131] 

10 rate of 
photosynthetic 
activity and 
conductance 
of stomatal 
cells 

Increased biomass 
gain and a high 
degree of 
photosynthetic rate 
under drought 

Resistance in times of 
stress 
 

[132,
133] 

13 Root length 
and leaf area 
 

Increased root-to-
above-ground ratio 
and more leaf area 

Adapt to extreme 
drought conditions and 
survive 
 

[134] 

14 Photosynthetic 
capability, 
stomatal 
conductance, 
and fresh and 
dry weights of 
the shoots 
 

Shoot fresh and dry 
weights, stomatal 
conductance, and 
photosynthetic 
capacity all drop 
less. 
 

Shows drought stress 
tolerance in selected 
species 

[135] 
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Molecular Responses to Drought Tolerance 
While drought tolerance is a result of many 
physiological, metabolic, and cellular processes, it 
also arises at the molecular level through the 
induction or repression of multiple genes that lead 
to the buildup of different osmolytes, improved 
antioxidant systems, and decreased transpiration 
[136]. Activating a multitude of genes with diverse 
functions triggers the plant's physiological and 
biochemical responses to drought stress [137]. 
 
The development of "Omics"-based techniques, 
including transcriptomics, proteomics, 
metabolomics, interactomics, and phenomics in 
several model species, has contributed 
significantly to new experimental knowledge in 
the post-genomic age. These methods have laid the 
groundwork for "Functional Genomics," which 
seeks to identify genes and define their roles [107]. 
 
Numerous researchers across the globe have 
undertaken extensive research to improve the 
drought tolerance of the crucial crop by identifying 
and characterizing suitable dehydration-
responsive candidate genes. These genes are 
categorized as either functional genes or 
regulatory genes. Functional genes like those that 
encode Numerous enzymes that are engaged in the 
creation of protective metabolites, 
transporters/channel proteins, antioxidative 
enzymes, genes involved in lipid biosynthesis, 
etc., support distinct mechanisms that help plants 
survive stress and recover from it. Regulatory 
proteins, including transcription factors (TFs), 
alternative splicing factors, protein kinases, stress 
receptors, and parts of the machinery that break 
down proteins, are encoded by regulatory genes. 
These regulate signal transduction pathways and 
alter the expression and by-products of many 
genes linked to stress [138-142]. 
 
Molecular procedures associated with drought 
tolerance are typically examined within two 
primary categories. According to(Joshi et al, 
2016),[143]  these important genes primarily code 
for proteins with metabolic or regulatory 
functions, including those involved in 

detoxification, osmolyte biosynthesis, proteolysis 
of cellular substrates, water channels, ion 
transporters, heat shock protein (HSP), membrane-
stabilizing proteins, chaperones, and late 
embryogenesis abundant (LEA) protein [144];  
which help to increase the water-binding capacity 
of cells by functioning in water channels.   
 
TFs (NAC,AREB, AP2/ERF, MYC, MYB, and 
bZIP), calcium-dependent protein kinases 
(CDPK), signaling protein kinases (mitogen-
activated protein kinases, or MAKK),  ribosomal 
protein kinases,  receptor protein kinases, 
transcription regulation protein kinases), and 
protein phosphatases (phospholipase and 
phosphoesterases ) are the main components of the 
regulatory class, on the other hand, which 
synchronizes signal transmission and gene 
expression during stress responses [145,146]. 
Through their regulation of downstream stress-
responsive genes, some of these regulatory genes, 
including TF have been demonstrated to be 
essential for several abiotic stress reactions. 
Alteration of the expression of these regulatory 
genes can therefore have a major impact on plant 
stress tolerance as they also regulate a large 
number of downstream stress-responsive genes at 
a given time [147]. 
 
Molecular analyses of signal transduction 
pathways reveal a significant correlation between 
changes in turgor pressure and the biosynthesis of 
the stress hormone abscisic acid (ABA), which 
subsequently triggers the activation of stress-
responsive genes [149]. This process involves the 
engagement of various protein molecules critical 
to stress signaling pathways, including 
transcription factors (TFs), enzymes, molecular 
chaperones, and metabolites. These proteins 
contribute to the intricate signaling cascades that 
enable plants to cope with water deficit stress. 
Additionally, a diverse array of signaling 
molecules has been identified as pivotal 
components in stress perception and signal 
transduction pathways. These include ABA, 
reactive oxygen species (ROS), hydrogen peroxide 
(H2O2), nitric oxide (NO), calcium ions (Ca²⁺), 
and polyamines (PAs), among others, which 
collectively regulate stress responses and 
adaptation mechanisms in plants [149]. Despite 
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extensive research efforts, relatively few potential 
sensor proteins have been conclusively identified.  
 
The primary challenge lies in the functional 
redundancy of genes encoding these sensor 
proteins, where the loss of function in one gene is 
often compensated by others, preventing 
noticeable stress-response phenotypes. This 
redundancy complicates the identification and 
characterization of critical sensor genes and 
highlights the complexity of plant stress signaling 
networks [150] 
 
Abscisic acid, or ABA, is a key modulator of many 
adaptable characteristics of plant developmental 
enhancements, including root growth, flower 
commencement, seed dormancy, germination, and 
embryo maturation. Additionally, it has been 
demonstrated that the ABA-independent 
regulatory mechanism controls drought-induced 
gene expression [145,151]. Under water-deficit 
conditions, the phytohormone abscisic acid (ABA) 
is reported to be abundant, leading to stomatal 
closure and the alteration of expression of various 
stress-related genes [152].  Several TF genes have 
been found to respond to drought stress through 
pathways that are either dependent or independent 
of ABA [145]. That means although many genes 
involved in the ABA signaling system are 
responsive to drought, the majority of genes 
activated by drought do not respond to ABA 
treatment, suggesting the existence of ABA-
independent drought-response pathways [153]. 
 
(Grill and Himmelbach,1998), explained these two 
systems for stress response in plants: the abscisic 
acid-dependent; and the abscisic acid-
independent, which are activated by various TFs, 
including ABA-responsive element binding 
protein (AREB proteins), ABF proteins (ABRE-
binding factor), DREB factors (dehydration 
responsive element binding factors), MYB/MYC 
proteins, and NAC proteins (NAM, ATAF1-Two 
and CUC domains)[154]. Moreover, other TFs 
provide drought tolerance via ABA-dependent 
pathways, such as bZIP [155, 156] NAC 
[155,157], ERF, HSF, ARF [158], WRKY, C2H2 
[157], and trihelix  [159]; control the drought 
response at the molecular level by regulating gene 
expression in metabolic pathways [160, 161]. TFs 

act as vital molecular switches that allow plants to 
adapt to abiotic stress and regulate their 
developmental process in the face of adversity 
[161, 143]. 
The distinctive TFBS of the plant-specific TFs 
defines their families. About 1500 likely TFs from 
about 30 TF families were found when the 
Arabidopsis thaliana (Arabidopsis) genome 
sequencing was finished [161,162]. Since no 
members of these families have been found in 
other eukaryotic lineages, around half of them 
were deemed to be plant specific. Specifically, 
(Yamasaki et al, 2013)'s recent investigation of 
plant TFBS three-dimensional structures showed 
that they most likely arose from endonucleases 
linked to transposable elements [163]. After being 
discovered in eukaryotes, TFBSs had significant 
growth in plants, gaining additional complexity 
and roles. Ten percent or so of plant genes encode 
TFs [164], which take part in different stages for a 
specific purpose.  
 
Various stress-responsive transcription factors 
(TFs) typically operate independently, there is 
potential for some degree of interaction or cross-
talk between them. Under stress conditions, 
numerous TF families that are relevant to the 
drought stress response have been discovered in 
recent years [165]; including CBF, DREB, MYB, 
ABF, AREB, ABA, SNF1-related kinase 2 
SnRK2, NAC, and WRKY [166].   These 
fundamental amino acids enable plants to resist 
abiotic stress [167]; and directly regulate the 
expression of genes linked to stress responses by 
functioning as molecular switches during signal 
transduction. Transcription factors (TFs) work 
together with other binding sites to activate plant 
genes [168,169]. They bind to the cis-acting 
elements that are present in the upstream regions 
of all gene promoters [170]. Moreover, TFs either 
activate or suppress the activity of the DNA 
polymerase enzyme and play a crucial role in gene 
expression [171]. 
 
In recent times, Wen et al, 2019 stated the tolerant 
response of an important tree species, Betula 
platyphylla (birch), to drought stress[172] . They 
identified 2917 genes related to drought stress 
through RNA-Seq method. Among these genes, 
MYB, MYC, ERF, bZIP, and WRKY families 
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have already been implicated in the regulation of 
stress responses [162,173]. In Arabidopsis, 
researchers have identified over 34 families and 
approximately 1533 transcription factors (TFs), 
which have been categorized [174]. As a result, 
these transcription factors are attractive targets for 
gene regulation and manipulation of the regulatory 
elements, which may be beneficial under abiotic 
stresses. By up-regulating many natural stress-
responsive pathways, the CBF (C-Repeat Binding 
Factor) genes provide abiotic stress tolerance 
[175,176]. ABA response element binding factor 3 
(ABF3) and C-repeat binding factor/Dehydration 
responsive element binding protein (DREB1A) are 
overexpressed in transgenic rice with enhanced 
resistance to extreme salinity and drought, but 
comparatively low resistance to exposure to cold 
temperatures [177]. 
 

Table 2. List of genes and their functions associated 
with drought tolerance. 
Name  characterization Type of 

tissue 

function Ref. 

EcNAC67 NAC (NAM, 
ATAF1/2, and 
CUC2) family 

Roots 
Leaf 
 

influence plant 
developmental 
processes such as leaf 
senescence, root 
development, and 
vascular differentiation. 

[178, 

180] 

DRO1  
(Deeper 
Rooting 1) 

IAA (Aux/IAA) 
gene family 

Root Deep rooting facilitated 
by DRO1 enhances the 
plant's ability to survive 
and maintain 
productivity during 
water-limited 
conditions 

[181 

,182] 

DsM1 (Drought Stress 
Mitigating 1) is a 
Raf-like mitogen-
activated protein 
kinase kinase 
kinase 
(MAPKKK) gene.  
 

Stamen, 
pistil, 
mature leaves 
and 
roots 

DsM1 contributes to 
drought tolerance by 
enhancing ROS 
scavenging activity, 
reducing oxidative 
damage during drought 
stress. 
It acts in an abscisic 
acid (ABA)-
independent signaling 
pathway, which is 
crucial for drought 
adaptation. 

[183, 

184] 

PYL/RCA
R5 

OsPYL/RCAR5 is 
a key ABA 
(abscisic acid) 
receptor in rice 
(Oryza sativa), 
part of the 
PYL/RCAR 
family involved in 
ABA signaling 

Leaf blade, 
higher root 
and shoot 
mass  
 
 

It induces stomatal 
closure by activating 
ABA signaling 
pathways 
-By controlling water 
balance and stomatal 
conductance 
-OsPYL/RCAR5 helps 
maintain leaf fresh 
weight, contributing to 
drought resilience and 
overall plant health. 
- It interacts with PP2C 
(type 2C protein 
phosphatases) to 
release SnRK2 (SNF1-
related kinase 2), which 
activates downstream 
genes involved in stress 

[185 

-186] 

responses, including 
those for ROS 
scavenging and 
osmotic adjustment. 
- OsPYL/RCAR5 and 
EcNAC67 delay leaf 
rolling and induce 
higher root and shoot 
mass in rice under 
water deficit conditions  

DREB1F Transcription 
factor in the 
DREB 
(dehydration-
responsive 
element-binding) 
family.  

Almost all 
tissues, 
but higher in 
callus and 
panicle 
Root 
morphologic
al adaptations  

contributes to the ABA-
dependent signaling 
pathway, coordinating 
stress-responsive gene 
expression to enhance 
plant resilience. 

[187 

.188] 

DREB2B  Transcription 
factor in the 
DREB 
(dehydration-
responsive 
element-binding) 
family.  

Leaf-sheath, 
Root tissues 
Root 
morphologic
al adaptations  
 

dehydration-responsive 
element (DRE), is an 
essential cis-acting 
element for the 
regulation 
of RD29A induction in 
the ABA-independent 
response to dehydration 
 
 

[189-

190] 

 

CYP735A    family 
of cytochrome 
P450 
monooxygenases 

- Enhancing 
shoot growth 
and yield. 

- Improving 
stress 
tolerance. 

- Controlling 
root 
architecture 
to optimize 
nutrient 
uptake 

- Shoot and 
root growth, -
leaf-cell 
dividing 

CYP735A enzymes are 
key players in the 
biosynthetic pathway of 
trans-zeatin, linking 
cytokinin production to 
plant growth and 
environmental 
adaptation  for drought 
stress Maintains 
cytokinin level 

[191] 

EcNAC67 It is a member of 
the NAC (NAM, 
ATAF1/2, and 
CUC2) 
transcription 
factor family 

 
Leaves and 
roots 
 

It is particularly 
involved in the 
activation of stress-
responsive genes, such 
as those associated with 
antioxidant defense, 
osmolyte production, or 
structural adaptations to 
stress. 
Increases relative water 
content in leaves, 
delays leaf rolling 
symptoms, ensure 
better stomatal 
regulation during 
dehydration, and 
maintains higher root 
and shoot biomass 

[178] 

NAC5  It is a member of 
the NAC (NAM, 
ATAF1/2, and 
CUC2) 
transcription 
factor family 
A new ABA-
dependent 
transcription 
factor 
 

flag leaves  
Grain filling 

They directly regulate 
the expression of the 
genes linked to stress 
responses and improve 
drought resistance by 
functioning as 
molecular switches 
during signal 
transduction. 

[195] 

NAC46  
 

The NAC (NAM, 
ATAF1/ATAF2, 
and CUC2) 
transcription 
factors belong to a 
large family of 
plant specific 
transcription 
factors  

Plant root and 
shoot  
Leaves 

activates ROS-
scavenging enzymes 
and enhances root 
formation 

[192] 

NAC51 
 

It is a member of 
the NAC (NAM, 
ATAF1/2, and 

lateral root; 
secondary 
wall 

-NAC transcription 
factors are often 
involved in maintaining 

[193] 

https://link.springer.com/article/10.1007/s00425-009-1000-9
https://link.springer.com/article/10.1007/s00425-009-1000-9
https://link.springer.com/article/10.1007/s00425-009-1000-9
https://link.springer.com/article/10.1007/s00425-009-1000-9
https://link.springer.com/article/10.1186/s12870-020-02764-y
https://www.sciencedirect.com/science/article/pii/S0098847222003653
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CUC2) 
transcription factor 
family 

thickening, 
plant 
development, 
flowering, 
senescence, 
and seed 
quality, 
anther 
dehiscence, 

cellular homeostasis 
during unfavorable 
conditions. 

-improve structural traits 
like wood quality. 

SNAC1  SNAC1 (Stress-
responsive NAC1)  

callus, root, 
ligule, 
stamen, and 
pistil under 
normal 
growth 
conditions,  

Enhances spikelet 
fertility 

[194 

-196] 

LEA3-1  is a member of the 
Late 
Embryogenesis 
Abundant (LEA) 
protein family, 
 

Root development, 
 Late 
embryogenes
is is found in 
roots, stems, 
and other 
organs 
throughout 
the plant 
growth 
phase.  

Overexpression of 
LEA3-1 in transgenic 
rice and other plants 
has shown: 
Improved drought 
tolerance. 
Better survival under 
water-limited 
conditions. 
Plants with high LEA3-
1 expression display 
less wilting, better root 
development, and 
higher chlorophyll 
retention under stress. 
LEA3-1 may also play a 
role in reducing 
oxidative damage 
during stress by 
mitigating the effects of 
reactive oxygen species 
(ROS). 
 
Enhances grain yield 

[197 

-199] 

 

OsbZIP46  
 

It is a member of 
the bZIP (basic 
leucine 
zipper) transcripti
on factor family 
in rice (Oryza 
sativa). 

The lengths 
of the shoot 
and root 

It is involved in the 
ABA signaling 
pathway, which is 
essential for stomatal 
closure, reducing water 
loss, and maintaining 
cellular homeostasis 
under drought stress. 

[200] 

OsMIOX 
 

 It is a Myo-
inositol oxygenase 
enzyme in rice 

Grain -early 
growth 
stages. 
plays a 
central role in 
inositol 
metabolism, 
linking it to 
stress 
tolerance,  
cell wall 
biosynthesis,  
 antioxidant 
defense.  
 
 

OsMIOX contributes to 
drought and salinity 
tolerance by 
modulating inositol 
metabolism, which 
influences osmotic 
balance and reactive 
oxygen species (ROS) 
detoxification. 
It enhances the 
production of 
metabolites involved in 
osmoregulation and 
stress protection, such 
as compatible solutes. 

[201] 

OsbZIP33 It is a basic leucine 
zipper 
(bZIP) transcriptio
n factor in rice 
(Oryza sativa), 
part of a large 
family of 
transcription 
factors 
  

seed 
development 
Root-seed 
 

 
OsbZIP33 activates or 
represses genes 
involved in: 
Osmo protectant 
synthesis: Compounds 
like proline or sugars 
that help maintain 
cellular osmotic 
balance. 
Antioxidant defense: 
Enzymes and 
metabolites that reduce 
oxidative damage 
caused by stress-
induced reactive 
oxygen species (ROS). 
Stomatal closure: 
Regulating water loss 
during drought stress. 

[202]  

CBF3  C-Repeat Binding  under drought stress [203] 

Factor)  genes  showed increased 
antioxidant activity and 
photosynthetic rate in 
transgenic Salvia 
miltiorrhiza plants. 

 

GmMYB8
4  

MYB Root, Flower, 
and  

enhances the response 
to drought stress and 
encourages root 
development Soybean 
roots and flowers 
 

[204]  

ZAT18  Zinc finger Leaves, 
Stems, 
siliques 

Positive drought stress 
regulator in 
Arabidopsis 

[205] 

GmYABB
Y10 

 YABBY germination 
root, 
Seedling,  

Highly sensitive to 
drought in Soybean 

[206] 

OsC3H10  Zinc finger Seeds  Response to drought in 
Rice 

[207] 

GmNAC5   NAC  Seeds  Involved in seed 
development and 
abiotic in soybean 

[208] 

OsMYB4  MYB   Leaves, root, 
stem, flower, 
seed  

Improved physiological 
and biochemical 
adaptationRice/Transge
nic Apple 

[209] 

ARS1  MYB  Root, flower, 
leaves 
Tomato 

Stomatal closure  [210] 

 
The final stage involves the expression of 
functional genes that play roles in processes on the 
morphological level such as oxidative stress 
mitigation, leaf senescence, stomatal closure, or 
indirectly influencing regulatory genes that 
participate in signaling pathways and 
transcriptional regulation of gene expression 
Table. 3 [211,212] 
The complexity and makeup of the target genes 
that are found in the genome, as well as the 
transcription factor's ability to either activate or 
repress each target gene, Figure 1 may be the 
cause of these functional variations [156]. 
 
 Several genes related to DS at the transcriptional 
level have been investigated in microarray and 
real-time polymerase chain reaction (RT-PCR) 
studies [213-217,85,160,143]. Functional 
validation revealed that these genes protect against 
dehydration stress through stress perception, 
signal transduction, and transcriptional regulatory 
networks responding to drought tolerance Table. 3 
[218,219]. Furthermore, gene expression profiles 
are frequently used in conjunction with qRT-PCR 
to investigate drought stress tolerance 
mechanisms. For instance, while comparing the 
differentially expressed genes (DEGs) between 
control plants and PEG-treated Reaumuria 
soongorica, Liu et al, 2014 [220] discovered that 
379 genes were up-regulated and 946 genes were 
down-regulated under drought stress. R. 

https://www.nature.com/articles/s41467-024-45402-z
https://www.sciencedirect.com/science/article/pii/S0168945212001616
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soongorica may be able to survive drought stress 
by activating effective signal transduction 
pathways and strengthening the defense of helpful 
proteins to restore cellular homeostasis, based on 
an examination of these DEGs [220]. 
 
Gene expression in maize lines that were drought-
tolerant and drought-sensitive was compared 
under moderate drought, severe drought, and 
enough water (controls). The tolerant line's 
genotype-specific response of TFs and its 
permanent genotypically deferential expression of 
TFs may be important elements in maize's 
improved drought tolerance, according to further 
transcription factor study between these two lines 
[221]. 
 
Kumar et al, 2019; collected genome-wide 
transcriptome data of stressed indica and japonica 
rice cultivars [222].  Data analysis revealed that 
drought stress triggered responses from biological 
systems and related regulatory circuits. Candidate 
stress-responsive genes and a number of biological 
processes that are both similar and distinct across 
tolerant and sensitive types were found by 
examining DEGs [223]. 
 
Dalal et al, 2018; looked into the molecular 
mechanism of drought-induced root development 
in wheat using RNA-Seq [224]. They discovered 
that during drought stress, the root development of 
two wheat genotypes—Raj3765 and HD2329—
varies, with 2783 and 2638 DEGs, respectively 
[224]. According to their findings, drought-
induced root development in wheat requires a 
complicated interplay between hormones, ROS 
metabolism, cellular tolerance, and cell wall 
formation. Fox et al, 2018, investigated the 
dynamics of the physiological and molecular 
responses in Pinus halepensis under drought stress 
circumstances using transcriptome analysis at six 
physiological phases [225]. Their results showed 
that drought stress was responsible for the abscisic 
acid response, ROS scavenging through ASA-
independent thiol-mediated pathways, the 
accumulation of heat shock proteins, thaumatin, 
exordium, and chlorophyll degradation [225].  
In reaction to drought, plants modify the 
expression of certain genes and build up osmo-
active substances. It is commonly recognized that 

plants overproduce phytohormones, including 
chaperone proteins, oxygen scavenger radicals, 
and abscisic acid [226].  
Plants are known to overproduce phytohormones, 
including oxygen scavenger radicals, abscisic 
acid, and chaperone proteins [198]. Numerous 
metabolic, defensive, and physiological networks 
are stimulated by these chemicals. More 
specifically, the molecular metabolic system is 
made up of several signaling proteins, regulatory 
transcriptional factors, and functional genes that 
work together to achieve the desired outcome 
Table. 3[226].  
Additionally, the ethylene-responsive factor and 
myeloblastosis oncogene families of transcription 
factors were found to be the most abundant. Also, 
researchers have reported that BpERF2 and 
BpMYB102 transcription factors play a crucial 
role in enhancing plant resistance to drought 
Table. 3 [172]. These two TFs activate various 
other stress-related genes, ultimately providing 
drought tolerance. (Sakuma et al, 2002) [227] 
identified different types of DREBs transcription 
factors in the model Arabidopsis plant Table. 3. 
They proposed that DREB2A and DREB1A attach 
to a particular six-nucleotide sequence (A/GCC 
GAC) of DRE, increasing drought and cold 
tolerance in Arabidopsis [177,207,200,227-230]. 
However, the specificity of these transcription 
factors varies with changes in the second and third 
nucleotides in the sequence (A/GCC GAC) of 
DRE. They also categorized these proteins into 
different groups, such as the AP-2 subfamily, 
RAV subfamily, DREB subfamily, ERF 
subfamily, and others. This information is 
supported by [231]. APETALA2/ERF (AP2/ERF) 
is known as a broad family of TFs and protein 
kinases that are involved in regulating many 
biological processes in plants. It is widely known 
how the AP2/ERF family reacts to many 
environmental stresses, including dehydration. It 
is composed of OsDREB2A and OsDREB2B, 
which convey the stress response via an ABA-
independent route Table. 3 [232]. Through their 
interactions with other transcription factors, 
including BR regulated [233], WRKY [234], 
MYB [235], and zinc finger transcription factors 
[236], several AP2/ERF transcription factors 
control plant growth and development as well as 
stress response. Transcription factor of WRKY, 
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OsWRKY21 (LOC_Os01g60640) [237]. 
 

Figure 1. Model for transcription factors regulating 
abiotic stress-signaling pathways. (modified149). 
 
 In addition to increasing crop resilience to drought 
conditions by selecting drought-tolerant 
germplasms from a large pool of candidates, 
molecular breeding approaches, such as marker-
assisted selection, might be utilized to produce 
distinct crop populations with increased drought 
tolerance [238]. Nevertheless, these molecular 
markers can be used to enhance the crop 
improvement process and to filter drought-tolerant 
germplasms from the vast pool of possibilities. 
The main methods for determining which genes in 
rice are in charge of drought resistance are DNA 
studies that make use of marker-based 
phenotyping. Despite significant progress in 
discovering drought-resistant characteristics, only 
a small number of these features have been 
identified so far [239,240]. Previous molecular 
genetic investigations have identified several 
QTLs linked to different physiological and 
biochemical parameters [241,242,243,244].  
However, these investigations were unable to 
identify the genes responsible for these features 
because of low mapping specificity and a limited 

phenotypic effect [245,246]. In 1995, The 
International Rice Research Institute (IIRI) 
Philippines carried out the first QTL tagging for 
root-associated characteristics. Since then, several 
QTLs have been identified for features that are 
thought to help various crops withstand drought.  
Various morphological and physiological traits 
along with their corresponding QTLs are involved 
in mechanisms for drought adaptation and 
tolerance and have been reported in cereals. For 
example, Grain yield [247]; Osmotic adjustment 
[248]; Root traits [249]; Basal root thickness and 
100-grain weight [250]; Plant production [250]; 
Filled grain number per panicle [75]; Panicle 
number per plant  [75]. 
  
However, molecular breeding offers a chance to 
improve crop types, boost yield kinds, and 
generate safe harvests and agronomically sound, 
using markers for molecular screening is 
advantageous. Numerous QTLs linked to drought-
resistant features have been tagged using various 
markers, including RFLPs, RAPDs, CAPS, PCR 
indels, AFLPs, microsatellites (SSRs), SNPs, etc. 
Table. 3. Numerous investigations have been 
conducted to identify qualitative trait loci (QTLs) 
associated with different qualities, according to 
[47,244,61].  
Table 3. Application of DNA markers in 
horticultural crops for abiotic stress.  

Crop DNA Marker Objective Ref. 

 Miscanthus 
sinensis 
Perennial grass 
 

SSR To formulate SSR markers 
linked to drought resistance by 
utilizing transcriptome 
sequencing    

[264] 

Salvia miltiorrhiza 
Salvia 

 

AFLP - To segregate drought-related 
genes in sterile male and 
fertile near-isogenic lines of S. 
miltiorrhiza 
- To evaluate the change in 
fertility of plants during 
drought stres 

[265] 

Fragaria 
ananassa Duch. 

Strawberry 
 

Expressed 
sequence tag 
(EST) 

- To assess the correlation 
between leaf WLR and RWC 
and specific DNA markers 
 

[266] 

 
Manihot esculenta 
Cranz 

Cassava 
 
 

Expressed 
sequence 
tags–simple 
sequence 
repeat (EST–
SSR) 
markers 

- Marker-assisted selection of 
progeny tolerance to drought 
stress 
- Identification of specific 
gene associations related to 
drought stress resistance 

[267] 

 
 

Glycine max 
Soybean 

 
 
SSR (Satt226) 
 

aims to identify and confirm 
quantitative trait loci (QTL) in 
Nepalese soybean, providing 
genetic markers for drought-
tolerant varieties, enhancing 
food security, and improving 
resilience in water-limited 
environments. 
 

[268] 
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Glycine max 
Soybean 

 
 
SSR (Sat_044) 

The study aims to identify 
quantitative trait loci (QTL) 
linked to soybean responses to 
water-deficit stress, aiding in 
understanding the genetic 
basis of drought tolerance, 
potentially improving 
productivity and stability. 
 

 

[269] 

 
 

Glycine max 
Soybean 

SSR (Satt205-
Satt489) 

The study aims to identify 
quantitative trait loci (QTL) 
linked to soybean responses to 
water-deficit stress, aiding in 
understanding the genetic 
basis of drought tolerance, 
potentially improving 
productivity and stability. 
 

 

[270] 

 
 

Glycine max 
Soybean 

 
 
RFLP (A489H) 

A489H is associated with 
specific loci, these loci could 
include genes related to: 

• ABA Signaling Pathway: 
Important in regulating 
drought stress responses. 

• Water Transport Genes: 
E.g., aquaporins or genes 
controlling stomatal 
regulation. 

• Dehydration Response 
Proteins: Such as late 
embryogenesis abundant 
(LEA) proteins. 
 

 

[271] 

 
Glycine max 

Soybean 

RFLP (B031-1, 
A089-1, cr497-1, 
K375-1, A063-1) 

The study aims to identify 
molecular markers in 
soybeans related to water use 
efficiency and leaf ash 
content, providing genetic 
markers for breeding 
programs to enhance water use 
efficiency and stress tolerance, 
promoting sustainable 
production. 
 

 

 

[272] 

 
 
 

Sesamum indicum 
Sesame 

SNPs The study uses genome-wide 
association studies (GWAS ) 
and transcriptomic analyses to 
identify genes and pathways 
linked to drought resistance, 
aiding in breeding drought-
tolerant sesame varieties for 
improved crop productivity. 
The study examines 400 
accessions of sesame, 
focusing on genetic factors 
contributing to drought 
resistance, to enhance crop 
yield and stability, and 
potentially aid in drought-
tolerant breeding programs. 
 

 

 

[273] 

 
 

Arachis hypogaea 
Groundnut 

 

SSRs The study aims to identify 
quantitative trait loci (QTLs) 
associated with drought 
tolerance traits in groundnut, a 
complex trait influenced by 
multiple genetic factors, 
providing a comprehensive 
genetic basis for breeding 
drought-tolerant groundnut 
varieties. 
. 

 

 

[274] 

 
 
Arachis hypogaea 

Groundnut 
  

SSRs The study aims to analyze 
quantitative trait loci (QTL) in 
cultivated groundnut (Arachis 
hypogaea) and create a 
consensus genetic map for 
drought tolerance traits, aiding 
breeding programs for 
drought-tolerant groundnut 
varieties. 
 

 

 

[275] 

 SSRs and ISSRs The study aims to create a 
QTL linkage map for 

 

Carthamus 
tinctorius L. 

Safflower 
 

safflower, focusing on drought 
tolerance traits during 
reproductive stages, to 
enhance drought resilience 
and productivity in arid and 
semi-arid regions. 
 

[276] 

 
 

Gossypium hirsutum 
Cotton 

 

 Single strand 
conformation 
polymorphic 
(SSCP) 

QTL identification associated 
with drought resistance in 
inbred lines with 
developmental resistance  
 

[277] 

 
Sorghum bicolor 

Restriction 
fragment length 
polymorphism 
(RFLP) 

Identification of lodging 
resistance and drought 
resistance prior to blooming 
 

[278] 

 
 
Triticum aestivum 

wheat 
 
 

Simple sequence 
repeats (SSR), 
diversity array 
technology 
(DarT), gene-
based marker for 
Vrn-A1  

Genetic structure of drought 
tolerance by reproductive 
stage, formation of drought 
tolerance morphological 
approach concentrating on 
premature microspore stage of 
pollen formation for removing 
stress during flowering time 
 

[279] 

Triticum aestivum 
wheat 

 

Simple sequence 
repeats (SSR) 

To determine how SSR 
markers relate to chromosome 
2A's drought resistance trait  
 

[280] 

 
In conformity with recent findings, numerous 
agronomic characteristics, such as resistance to 
drought, are considered quantitative, since they are 
controlled by multi-genes, also referred to as 
polygenes.  As a result, the chromosomal loci that 
contain these kinds of genes are now known as 
quantitative trait loci (QTL). Direct selection 
under stressful conditions, whether natural or 
simulated, or identifying QTLs (polygenes) and 
then using marker-assisted selection are two ways 
to take use of a crop's inherent genetic variety [ 
251]. 
For example, some SSR markers linked to these 
QTLs have also been discovered [252], for 
molecular screening may be used to quickly and 
accurately profile the rice lines by checking for 
drought tolerance in a new genotype of rice. (Barik 
et al, 2019) [244], looked at the genetic mapping 
of morpho-physiological variables linked to 
drought tolerance in rice throughout the 
reproductive stage. Under drought stress, they 
discovered five QTLs that control leaf rolling, leaf 
drying, harvest index, spikelet fertility, and 
relative water content, respectively: qLR9.1, 
qLD9.1, qHI9.1, qSF9.1, and qRWC9.1.  
Recently, molecular tools have been utilized to 
accelerate crop yield improvement [253]. One 
such tool that has become prevalent in breeding 
programs is marker-assisted selection (MAS), 
which enhances breeding efficiency [254]. A 
variety of MAS strategies have been developed, 
such as marker-assisted backcrossing [255,256], 
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which involves foreground and background 
selection [257,258].  Additionally, favorable 
alleles can be enriched in early generations 
[259,260], and selection for quantitative traits can 
be performed using markers at multiple loci  
[261,262]. Multiple cycles of selection can also be 
employed [263]. (Frisch and Melchinger, 2005) 
proposed a selection theory for marker-aided 
backcrossings, which suggests that the selection 
response depends on the marker linkage map and 
parents’ marker genotypes[264]. 
 
Conclusions and Future Research Priorities 
The acceleration of climate change poses a 
significant threat to global food security, with 
droughts severely impacting plant growth, 
development, productivity, and survival. Despite 
their vulnerability to water scarcity, plants have 
evolved various drought-resistant traits to mitigate 
the negative effects of stress. Under limited water 
conditions, plants activate internal defense 
mechanisms to minimize water loss. These 
responses begin with the perception of 
environmental signals and extend to physiological 
and metabolic adaptations governed by 
endogenous developmental programs, enabling 
plants to withstand adverse conditions such as 
drought. 
The changes in physiology, metabolism, and 
morphology that protect plants from drought are 
considered key adaptations to drought. Different 
combinations of these traits lead to diverse 
strategies for coping with water scarcity. The 
morphological, physiological, and metabolic 
characteristics of plants can vary widely, as they 
coordinate their responses to environmental 
constraints in order to improve adaptation. 
Furthermore, varying levels of adaptability can 
coexist, enabling whole distinct biological models.  
 
The present knowledge regarding drought stress 
genes was covered in this review, with particular 
attention paid to four popular plant responses to 
stress strategies which are physiological, 
morphological, sensing transduction, and 
molecular levels which have been the primary 
focus of these strategies for improving agricultural 
drought tolerance.  
At the molecular level, TFs have been reviewed to 
show their roles in drought stress and their 

apparent connection to both ABA-dependent and -
independent pathways. Significant advancements 
have been made in recent years in understanding 
the molecular processes that govern drought stress 
tolerance in plants. These advances have 
highlighted the role of molecular mechanisms in 
regulating the expression of genes involved in 
various adaptive processes. Such adaptations, 
manifested as morphological, physiological, and 
metabolic modifications, occur at both the cellular 
and organismal levels across different stages of 
plant development [281]. 
Despite these strides, progress in identifying the 
genetic determinants of drought resistance remains 
limited. The intricate nature of drought resistance, 
encompassing a wide range of interconnected 
physio-biochemical processes, poses significant 
challenges. In particular, comprehensive 
knowledge of the roles, interactions, and 
regulatory networks of these genetic factors is still 
lacking. 
To fully harness the potential of transcription 
factor (TF) manipulation for improving drought 
resistance, several key challenges must be 
addressed. These include deciphering the complex 
gene regulatory networks that mediate drought 
responses, identifying stress-responsive TFs with 
high precision, and understanding how these 
factors interact within broader signaling pathways. 
Addressing these gaps is essential to enable the 
effective application of genetic engineering and 
breeding strategies aimed at enhancing crop 
resilience to drought stress. 
.  
In addition, molecular genetics provides numerous 
DNA markers that explore genetic modification, 
genotypic resistance, stress-tolerant lines, and 
genetic information related to abiotic stresses. 
Early molecular marker technology provided 
DNA markers that offered basic information about 
stress resistance [149]. 
However, current advanced marker applications 
can now identify specific genes or groups of genes 
responsible for abiotic stress tolerance. Combining 
DNA markers with QTL mapping illustrates a 
pattern of stress tolerance genes on specific 
chromosomal loci. However, the demand for 
continuous improvement in DNA marker 
technology will allow even more detailed analysis 
of stress tolerance as climate changes. 
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In natural environments, plants are often subjected 
to multiple abiotic stresses simultaneously. To 
survive these conditions, numerous genes and 
distinct stress response pathways are co-activated, 
which may interact in either antagonistic or 
synergistic ways. The complexity of these 
interactions can be further amplified by the 
overexpression of specific transcription factors 
(TFs), potentially influencing other signaling 
pathways due to the intricate regulatory networks 
connecting various TFs across multiple levels. 
Developing stress-resistant crop varieties through 
the manipulation of regulatory genes requires a 
thorough understanding of regulatory networks 
and the functional roles of transcription factors 
(TFs). Emphasizing the identification and 
characterization of stress-responsive TF genes 
should remain a primary focus of research in this 
field [149].	
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