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1	INTRODUCTION	
Globally,	 road	 crashes	 are	 a	 leading	 cause	 of	 death,	 with	
approximately	1.9	million	 lives	 lost	 each	year	 [1].	Although	
the	 annual	 rate	 is	 gradually	 declining,	 these	 numbers	 still	
represent	a	 signi@icant	 loss	of	 life,	particularly	among	 those	
aged	 5	 to	 29	 years	 [2],	 making	 road	 safety	 a	 priority	
worldwide.	Efforts	 to	 enhance	 road	 safety	 are	multifaceted,	
focusing	 on	 reducing	 the	 incidence	 and	 severity	 of	 crashes	
through	 diligent	 infrastructure	 maintenance.	 However,	
crashes	 generally	 stem	 from	 errors	 associated	 with	 three	
critical	elements,	namely	roads,	vehicles,	and	drivers,	which	
are	 complex	 and	 highly	 dependent	 on	 the	 context.	 Thus,	
crashes	can	occur	even	on	roads	that	are	maintained	to	 the	
highest	 standards.	 To	 better	 understand	 and	 prevent	 these	
incidents,	 researchers	 are	 developing	 predictive	 models	 to	
identify	 locations	 with	 higher-than-expected	 numbers	 of	
crashes	 [3].	These	models,	which	are	 informed	by	variables	
that	 describe	 road	 segments	 or	 crash	 characteristics	 [4–7],	

help	 policymakers	 formulate	 strategies	 to	 systematically	
decrease	the	number	of	crashes	and	mitigate	their	severities.	
	Road	networks	 are	 typically	 divided	 into	 intersections	 and	
homogeneous	 segments	 [3],	 with	 specialized	 predictive	
models	 created	 for	 each	 type.	 These	 models	 are	 used	 to	
predict	 crash	 counts	 and	 then	 compared	with	 actual	 crash	
data.	 Segments	 that	are	associated	with	a	 larger	number	of	
observed	 crashes	 than	predicted	 are	 identi@ied	 as	 hotspots,	
indicating	the	need	for	further	investigation.	Thus,	ensuring	
the	 accuracy	 of	 these	 predictive	models	 is	 crucial.	 A	major	
challenge	in	analyzing	road	crash	data	is	the	heterogeneity	of	
observations,	wherein	the	number	or	severity	of	crashes	may	
vary	 owing	 to	 factors	 that	 are	 not	 directly	 observed	 or	
measured,	 such	 as	 endogeneity,	 risk	 compensation,	 and	
spatial	 or	 temporal	 correlations	 [8,9].	 In	 other	 words,	
omitting	 important	 factors	 from	 a	 model	 can	 result	 in	 the	
heterogeneity	of	observations	and	skewed	model	parameters	
and	predictions.	
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1.1 Segment-level	prediction	models	

Numerous	 studies	 have	 focused	 on	 developing	 predictive	
models	for	road	segments	across	different	classes,	including	
highways,	arterials,	and	collectors.	 In	 these	models,	average	
annual	daily	traf@ic	(AADT)	and	segment	length	consistently	
play	 crucial	 roles	 and	 are	 often	managed	 using	 logarithmic	
scaling.	 However,	 the	 selection	 of	 other	 predictors	 varies	
depending	 on	 the	 speci@ic	 road	 segment	 class.	 In	 a	
comprehensive	study	examining	factors	related	to	crashes	on	
major	urban	arterial	roads,	several	key	insights	emerged	[10].	
First,	 the	 logarithm	of	AADT	and	 the	 length	of	 the	 segment	
were	 identi@ied	 as	 signi@icant	 predictors	 of	 crash	 counts.	
Speci@ically,	 higher	 AADT	 and	 longer	 road	 segments	 were	
correlated	 with	 increased	 crash	 rates.	 Second,	 side	 access	
density,	referring	to	the	presence	of	driveways,	intersections,	
and	access	points	along	the	road,	was	associated	with	more	
frequent	 crashes.	 In	 contrast,	 the	 presence	 of	 medians	
(central	 dividers)	 acted	 as	 a	mitigating	 factor,	 reducing	 the	
frequency	of	crashes.	While	examining	factors	that	in@luence	
crashes	on	minor	arterial	and	collector	roads,	 it	was	shown	
that	minor	arterial	roads	were	associated	with	a	higher	rate	
of	 crashes	 than	 collector	 roads	 [11].	 Separate	 predictive	
models	 were	 developed	 based	 on	 total	 crashes,	 fatal	 and	
injury	(FI)	crashes,	and	property	damage–only	(PDO)	crashes	
for	 each	 type	 of	 road	 class,	 and	 a	 consistent	 trend	 was	
observed:	 An	 increase	 in	 driveway	 density	 was	 associated	
with	 higher	 crash	 rates	 in	 all	 models.	 Several	 studies	 have	
linked	the	number	of	con@lict	points	with	crashes	[12,13],	and	
intersections,	 which	 create	 multiple	 con@lict	 points,	 often	
contribute	to	increased	crashes	[14].	Consequently,	segments	
with	many	 intersections	 tend	 to	 exhibit	more	 crashes	 than	
segments	 without	 intersections.	 These	 @indings	 underscore	
the	 importance	 of	 considering	 road	 design	 and	 traf@ic	 @low	
when	developing	predictive	models	for	arterial	and	collector	
roads.		
In	a	recent	study,	researchers	developed	a	predictive	model	
for	 signalized	 intersections	 along	 urban	 arterial	 roads,	
revealing	 that	 traf@ic	 signal	 operations	 signi@icantly	 impact	
crash	counts	at	these	intersections	[15].	Additionally,	higher	
intersection	density	may	exacerbate	crash	risks,	emphasizing	
the	need	for	thoughtful	planning	and	management.	In	another	
study,	21	separate	models	were	developed	 to	analyze	crash	
types	 and	 severity	 levels,	 speci@ically	 for	 interstate	 roads,	
highlighting	 the	 signi@icant	 impact	of	AADT,	 road	curvature,	
and	medians	on	the	occurrence	of	crashes	[16].	However,	it	is	
important	to	note	that	these	separate	models	were	developed	
for	 the	 same	 segments,	 suggesting	 a	 potential	 correlation	
between	crash	types.	Various	studies	conducted	on	highways	
have	consistently	shown	that	AADT,	segment	 length,	curved	
segments,	and	the	number	of	lanes	signi@icantly	impact	crash	
counts	 [17,18],	 consistent	 with	 previous	 work	 focused	 on	
unobserved	 heterogeneity	 and	 omitted	 variables	 [19].	
Additionally,	 the	 latter	 study	 revealed	 that	 the	 impacts	 of	
heavy	 truck	 proportion,	 road	 curvature,	 and	 grade	 vary	
signi@icantly	 across	 observations.	 Overall,	 these	 studies	
emphasize	 the	need	 for	nuanced	approaches	 to	 road	 safety	
management.	
	
	
	

1.2 Multilevel	modeling	in	trafAic	safety	

Crash	 data	 typically	 possess	 hierarchical	 or	 multilevel	
structures.	For	example,	crashes	that	occur	on	a	speci@ic	road	
in	a	particular	county	are	more	likely	to	share	similarities	than	
crashes	that	occur	on	different	roads	or	in	different	counties.	
Although	 these	 similarities	 are	 often	 not	 captured	 by	
explanatory	 variables,	 multilevel	 models	 are	 well	 suited	 to	
account	 for	 the	dependencies	between	observations.	Huang	
and	 Abdel-Aty	 [20]	 proposed	 a	 @ive-level	 hierarchy	 to	
represent	 multilevel	 structures	 in	 road	 crash	 data.	 The	
framework	included	the	following	levels:	geographic	region,	
traf@ic	site,	traf@ic	crash,	driver–vehicle	unit,	and	occupant,	in	
conjunction	 with	 the	 spatiotemporal	 level.	 Different	 sub-
groups	were	emphasized	within	 these	 levels	based	on	 their	
speci@ic	 research	 goals.	 Notably,	 the	 involvement	 of	 and	
emphasis	 on	 different	 sub-groups	 depended	 on	 the	
corresponding	research	purposes.	Furthermore,	the	approach	
relied	on	the	heterogeneity	examination	of	the	crash	data	to	
inform	 the	 selection	 of	 the	 relevant	 levels.	 To	 address	
heterogeneity	 and	 spatiotemporal	 correlation,	 the	 authors	
recommended	 the	 use	 of	 multilevel	 models	 that	 explicitly	
specify	 the	 multilevel	 structure	 and	 produce	 reliable	
parameter	 estimates.	 However,	 the	 structure	 of	 multilevel	
models	 depends	 on	 the	 type	 of	 data	 (aggregate	 or	
disaggregate)	being	analyzed.		
Although	multilevel	models	appear	to	offer	clear	bene@its	for	
aggregate	data,	their	application	to	disaggregate	data	should	
be	considered	more	carefully	[21].	One	study	modeled	single-
vehicle	 and	multi-vehicle	 crashes	 on	 interstates	 using	 both	
the	 Bayesian	 bivariate	 Poisson–log-normal	 model	 and	 a	
hierarchical	 Poisson	 model	 [22],	 demonstrating	 that	 the	
Bayesian	 bivariate	 Poisson–log-normal	 model	 signi@icantly	
outperformed	the	hierarchical	Poisson	model.	Speci@ically,	the	
hierarchical	 Poisson	model	 may	 not	 handle	 overdispersion	
effectively.	 In	 another	 study,	 crashes	 at	 intersections	 and	
segments	 along	 20	 corridors	were	mutually	modeled	 using	
multilevel	 Poisson–log-normal	 joint	 models	 [23].	 The	
corridors	 were	 segmented	 into	 sub-corridors	 based	 on	
similarities	 in	 traf@ic	 volumes	 and	 roadway	 characteristics,	
and	four	models	were	constructed:	a	multilevel	Poisson–log-
normal	 joint	 model	 using	 corridors	 as	 a	 higher	 level	 with	
random	effects,	a	multilevel	Poisson–log-normal	joint	model	
using	sub-corridors	as	a	higher	 level	with	random	effects,	a	
multilevel	Poisson–log-normal	joint	model	using	corridors	as	
a	 higher	 level	 with	 random	 parameters,	 and	 a	 multilevel	
Poisson–log-normal	 joint	 model	 using	 sub-corridors	 as	 a	
higher	level	with	random	parameters.	The	model	using	sub-
corridors	 as	 a	 higher	 level	 and	 random	 parameters	
outperformed	the	other	models.	Key	@indings	from	the	study	
include	 the	 signi@icant	 impact	 of	 intersection	 density	 along	
the	corridor	and	sub-corridors,	as	well	as	the	county	where	
the	corridor	is	located,	on	the	crash	counts	at	the	intersections	
or	segments,	suggesting	that	there	are	heterogeneous	effects	
across	corridors	and	counties.	Moreover,	a	study	by	Almutairi	
[24]	 proposed	 a	 multilevel	 model	 that	 accounts	 for	
correlations	 along	 county	 routes	 and	 over	 time,	 con@irming	
the	presence	of	heterogeneous	effects	across	different	county	
routes.	Multilevel	modeling	 is	generally	an	effective	 tool	 for	
managing	dependencies	between	observations,	 and	 it	has	a	
wide	range	of	applications.	 	
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1.3 Key	contributions	of	the	present	research	

The	 present	 study	 provides	 the	 following	 contributions:	 1)	
modeling	 crash	 counts	 in	 segments	with	 a	 large	number	of	
intersections	 and	 studying	 the	 impact	 of	 intersection	
numbers	on	crash	counts	per	segment.	Prior	studies	focused	
on	the	 intersection	effect	at	an	aggregate	 level,	whereas	the	
present	 study	 focuses	 on	 the	 intersection	 effect	 at	 a	
disaggregate	level,	an	area	that	has	been	scarcely	investigated;	
and	2)	modeling	two	distinct	dependent	variables,	namely,	FI	
crashes	and	PDO	crashes,	while	accounting	for	heterogeneity	
across	state	routes.	Prior	studies	utilized	multivariate	models	
to	account	 for	 the	correlation	between	FI	and	PDO	crashes,	
whereas	this	study	employs	a	three-level	model	to	account	for	
both	 the	 correlation	 between	 FI	 and	 PDO	 crashes	 and	 the	
heterogeneity	across	 county	 routes.	This	article	describes	a	
valuable	 approach	 for	 simultaneously	 modeling	 these	 two	
distinct	 types	 of	 crashes	 using	 multilevel	 modeling.	
Additionally,	this	research	reveals	the	factors	that	contribute	
to	 crash	 counts	 in	 segments	 with	 a	 large	 number	 of	
intersections,	 thus	 improving	 our	 understanding	 of	 road	
safety.	 This	 work	 not	 only	 advances	 the	 @ield	 of	 multilevel	
modeling	 in	 road	safety	but	also	provides	practical	 insights	
that	can	lead	to	improved	road	safety	measures.	
	
2. Methodology	

Crash	 counts	 in	 segments	 are	 typically	 overdispersed,	
implying	that	the	variance	is	greater	than	the	mean	[25].	Thus,	
the	negative	binomial	model	is	better	suited	for	crash	counts	
and	is	used	more	prevalently	in	modeling	crash	counts	[5].	A	
standard	negative	binomial	density	 function	 is	presented	 in	
Equation	(1).				

𝑓(𝑦!; 𝑘, 𝜇!) =
Γ(𝑦! + 𝑘)
Γ(k) × 𝑦!!

× /
𝑘

𝜇! + 𝑘
0
"

× /
𝜇!

𝜇! + 𝑘
0
#!
	 (1)	

Above,	Γ(. )	 represents	 a	 gamma	 function.	 The	 relationship	
between	the	variance	(𝜎$)	and	the	mean	(𝜇)	is	expressed	by	
the	 equation	 𝜎$ =	 𝜇 + %"

"
,	 indicating	 that	 the	 variance	

increases	 quadratically	 with	 the	 mean.	 If	 the	 dispersion	
parameter	 k	 approaches	 in@inity,	 the	 mean	 and	 variance	
become	equal;	the	negative	binomial	model	is	then	simpli@ied	
to	 a	 Poisson	 model	 [4].	 In	 this	 context,	 𝑦! 	 represents	 the	
number	of	crashes	in	segment	𝑖.	The	present	study	models	FI	
and	 PDO	 crash	 counts	 using	 both	 a	 two-level	model	 and	 a	
three-level	model.	

	
2.1 Two-level	negative	binomial	models		

The	two-level	negative	binomial	model	is	applied	separately	
for	 both	 FI	 crashes	 and	 PDO	 crashes.	 The	 formula	 is	
represented	by	Equation	(2):	

𝑦!& =	𝑒'(#$)	(%$+%!$)	("$+"!$)⋯)	(&$+&!$)-!$.	 (2)	

In	 this	 equation,	 the	 response	 variable,	 𝑦!& ,	 represents	 the	
crash	 count	 in	 segment	 𝑖	 in	 route	 𝑗.	 The	 intercept,	 𝛽/& ,	 is	
allowed	to	vary	across	different	routes,	as	shown	in	Equation	
(3):		

𝛽/& =	𝛽/ + 𝜇/& 	 (3)	

Here,	𝛽/	 is	the	overall	intercept,	and	the	random	parameter,	
𝜇/& ,	 is	 introduced	 to	 capture	 the	 heterogeneity	 across	
different	routes.	This	parameter	is	normally	distributed	with	
a	 mean	 of	 0	 and	 a	 variance	 of	 𝜎0# .	 The	 parameters	
𝛽1& , 𝛽$& , … , 𝛽2& 	are	@ixed	coef@icients	for	independent	variables	
denoted	by	X.	The	last	term	in	Equation	(2),	𝜀!& ,	is	a	random	
parameter	at	the	lowest	level	and	is	gamma-distributed,	with	
a	mean	of	1	and	a	variance	of	1/k.	
However,	modeling	 FI	 and	 PDO	 crashes	 separately	 neglects	
any	 correlation	 between	 them.	 To	 address	 this,	 the	 next	
section	 proposes	 an	 approach	 using	 a	 three-level	 negative	
binomial	model	to	model	FI	and	PDO	crash	counts	together.	
2.2 Multivariate	multilevel	negative	binomial	model	

A	multilevel	model	typically	analyzes	one	dependent	variable,	
but	it	can	be	used	to	analyze	more	than	one	response	variable	
by	 placing	 these	 response	 variables	 on	 a	 separate	 level,	
namely	 the	 lowest	 level.	 In	 this	 study,	 the	 two	 response	
variables	 are	 FI	 and	 PDO	 crash	 counts.	 The	 formula	 is	
expressed	using	Equation	(4):	
𝑦!&"
=	𝑒'(#$')	(%$'+%!$')	("$'+"!$')⋯)	(&$'+&!$'.×4%$'
× 𝑒'5#$')	5%$'+%!$')	5"$'+"!$')⋯)	5&$'+&!$'.×4"$' × 𝑒-!$' 	

(4)	

	
Here,	the	response	variable,	𝑦!&" ,	is	measure	i	of	segment	j	

in	route	k.	The	dummy	variables,	𝑑1&"	and	𝑑$&" ,	are	indicators	
corresponding	to	FI	and	PDO	crash	counts,	respectively.	The	
assumption	is	that	the	intercepts	of	both	the	FI	and	PDO	crash	
counts	are	nested	in	segments,	and	these	segments	are	nested	
in	routes	(Figure	1).	The	formulas	are	shown	in	Equations	(5)	
and	(6):		
𝛽/&" =	𝛽/" + 𝜇/&"	
𝛾/&" =	𝛾/" + 𝜐/&"	

(5)	

	
𝛽/" =	𝛽/ + 𝜇/"	
𝛾/" =	𝛾/ + 𝜐/"	

(6)	

	
The	coef@icients	𝛽/and	𝛾/	are	the	overall	intercepts	for	FI	and	
PDO	crash	 counts,	 respectively.	The	 last	 terms	 in	Equations	
(5)	 and	 (6)	 are	 the	 deviations,	 and	 they	 have	 multivariate	
normal	distributions	with	means	of	0.	These	deviations	are	
allowed	 to	 be	 correlated	 with	 each	 other,	 as	 shown	 in	
Equations	(7)	and	(8).	
At	level	2:	

=
𝜇/&
𝜐/&>	~N A=

0
0> , C

𝜎%#$
$ 𝜎%#$6#$

𝜎%#$6#$ 𝜎6#$
$ DE		 (7)	

	
At	level	3:	

=
𝜇/"
𝜐/">	~N A=

0
0> , C

𝜎%#'
$ 𝜎%#'6#'

𝜎%#'6#' 𝜎6#'
$ DE	 (8)	

	
Hence,	 the	 deviations	 at	 level	 2	 are	 assumed	 to	 be	
independent	 across	 the	 segments	 (j),	 and	 similarly,	 the	
deviations	at	level	3	are	assumed	to	be	independent	across	the	
routes	 (k).	 Deviations	 at	 all	 levels	 are	 also	 assumed	 to	 be	
mutually	 independent.	 Finally,	 all	 model	 estimations	 were	
performed	 using	 the	 glmmTMB	 R	 package,	 which	 employs	
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maximum	 likelihood	estimation	and	Laplace	approximation	
to	integrate	over	random	parameters	[26].	
	

	
Figure	1:	Illustration	of	the	multivariate	multilevel	model	
structure.	

2.3 Assessing	model	performance	and	comparing	model	
predictions	

In	 Sections	 2.1	 and	 2.2,	 two	 univariate	 models	 and	 one	
multivariate	model	are	introduced	for	modeling	FI	and	PDO	
crash	 counts	 separately	 and	 together,	 respectively.	 In	 these	
models,	a	bottom-up	approach	is	used	to	test	and	construct	
each	model	 using	 sequential	 likelihood	 ratio	 tests.	 The	 test	
statistic	 for	 the	 likelihood	 ratio	 is	 computed	 using	 the	
difference	in	deviance	between	the	two	competing	models.	In	
this	context,	“deviance”	is	de@ined	as	−2	times	the	logarithm	
of	 the	 likelihood,	 where	 the	 likelihood	 is	 the	 value	 of	 the	
likelihood	 function	 at	 its	 convergence	 point.	 This	 value	
follows	 a	 chi-squared	 distribution,	 with	 the	 degrees	 of	
freedom	 being	 the	 difference	 in	 the	 number	 of	 parameters	
estimated	in	the	two	competing	models.	Akaike’s	information	
criterion	(AIC)	and	Schwarz’s	Bayesian	information	criterion	
(BIC)	use	deviance	but	 impose	a	penalty	for	each	estimated	
parameter.	Thus,	the	test	statistic	for	comparing	or	assessing	
the	 performance	 of	 the	 univariate	 models	 with	 the	
multivariate	model	is	expressed	using	Equation	(9):	
𝜒$ = (𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒7849:	;< + 𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒7849:	=>?)

− 𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒7849:	7	
(9)	

The	@irst	two	terms	are	deviances	for	the	univariate	models	of	
the	FI	and	PDO	crash	counts,	respectively.	The	last	term	is	the	
deviance	for	the	multivariate	model.	The	degree	of	freedom	is	
the	 difference	 in	 the	 estimated	 parameters	 between	 both	
univariate	models	 and	 the	multivariate	model.	 For	 AIC	 and	
BIC,	 the	 formulas	 are	 expressed	 using	 Equations	 (10)	 and	
(11):		

𝐴𝐼𝐶 = 𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒 + 2 × 𝑞,	 (10)	

	

𝐵𝐼𝐶 = 𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒 + 𝑞 × ln(𝑁)	 (11)	

	
Here,	 the	 deviance	 is	 the	 sum	 of	 the	 deviances	 for	 both	
univariate	models	or	the	deviance	for	the	multivariate	model,	
q	 is	 the	number	of	estimated	parameters,	and	N	 is	 the	total	
number	 of	 observations.	 Similarly,	 the	 predictions	 are	
evaluated	 using	 root	 mean	 square	 errors	 (RMSEs)	 for	 in-
sample	 and	 out-of-sample	 data,	 the	 univariate	models,	 and	
the	multivariate	model.		

𝑅𝑀𝑆𝐸 = Y
∑ (𝑂𝑉! − 𝑃𝑉!)$
@%
!A1 + ∑ (𝑂𝑉! − 𝑃𝑉!)$

@"
!A1

𝑛1 + 𝑛$
	 (12)	

	
Here,	OV	and	PV	are	the	observed	and	predicted	values,	and	n1	
and	n2	are	the	total	observations	for	FI	and	PDO	crash	counts,	
respectively.	 Moreover,	 the	 graphs	 for	 the	 predicted	 values	
versus	the	observed	values,	along	with	their	regression	lines,	
have	been	obtained	for	in-sample	and	out-of-sample	data	to	
assess	the	prediction	performance	of	the	models.	
	
3. Data	wrangling	and	descriptive	statistics	

The	data	utilized	in	this	study	were	collected	between	2016	
and	2017	for	the	state	of	Ohio.	The	data	from	2016	were	used	
to	train	the	models,	and	the	data	from	2017	were	employed	to	
assess	the	predictive	performance	of	the	models.	Three	Excel	
@iles	 from	 the	 Highway	 Safety	 Information	 System	 were	
received	 regarding	 segments,	 crash	 data,	 and	 intersections.	
The	 “segments”	 @ile	 contained	 homogeneous	 segments	
located	on	state	routes.	The	target	population	in	this	research	
comprised	 multilane	 arterial	 segments	 with	 at	 least	 @ive	
intersections	 located	 in	 each	 segment.	 Consequently,	 the	
count	 of	 intersections	 per	 segment	 was	 determined	 by	
identifying	those	that	fall	within	the	range	of	mileposts	from	
the	starting	point	to	the	ending	point	along	a	speci@ic	route.	
Similarly,	 the	 numbers	 of	 sign-controlled	 and	 signal-
controlled	intersections	were	determined,	and	based	on	the	
crash	 data,	 the	 numbers	 of	 total,	 FI,	 and	 PDO	 crash	 counts	
were	computed.	
	

	
Figure	2:	Total	crashes	for	2016	and	2017	in	Ohio.	
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Figure	3:	Fatal	and	injury	crashes	for	2016	and	2017	

in	Ohio.	

	
Figure	4:	Property	damage-only	crashes	for	2016	and	

2017	in	Ohio.	

	Figure	2	through	Figure	4	display	histograms	illustrating	the	
distributions	of	total,	FI,	and	PDO	crashes	for	2016	and	2017.	
Accompanying	 these	 histograms	 are	 the	 corresponding	
descriptive	 statistics.	 The	 distributions	 depicted	 by	 the	
histograms	 demonstrate	 a	 consistent	 pattern	 across	 both	
years,	 as	 evidenced	 by	 the	 comparative	 analysis	 of	 their	
descriptive	 measures.	 This	 consistency	 underscores	 the	
stability	of	 the	observed	crash	patterns	over	 the	 two	years.	
There	are	277	segments	 for	each	year,	 encompassing	2,239	
intersections:	1,619	are	sign-controlled,	and	620	are	signal-
controlled.	The	dataset	designed	for	multivariate	analysis	was	
structured	by	stacking	the	univariate	dataset	twice,	resulting	
in	one	dependent	variable	that	represents	the	crash	counts,	
accompanied	 by	 two	 indicators:	 one	 for	 FI	 crashes	 and	
another	for	PDO	crashes.		

Table	1	presents	the	descriptive	statistics	of	the	explanatory	
variables.	There	are	two	grouping	variables:	The	@irst	variable	
pertains	 to	 segments,	 with	 two	 observations	 (one	 for	 FI	
crashes	 and	 one	 for	 PDO	 crashes),	 and	 the	 second	 variable	
groups	segments	that	are	located	on	the	same	routes	(refer	to	
Figure	1).	The	county	population	data	were	obtained	from	the	
United	 States	Census	Bureau	website	 (data.census.gov)	 and	
merged	with	the	dataset	by	county	name.	The	total	shoulder	
width	represents	the	combined	width	of	both	the	inner	and	
outer	sides	of	the	road	segments,	measured	in	feet.	
	
Table	1:	Statistics	of	the	explanatory	variables	

Variable	 Mean	 Range	 SD	

Ln	(AADT)	 9.605	 7.863	 –	
11.097	 0.464	

Ln	(segment	length)	(miles)		 −0.328	 −2.040	 –	
1.477	 0.639	

Number	of	lanes	 4.054	 3	–	6		 0.320	
Intersection	 density	
(intersections/mile)	 11.620	 1.359	 –	

38.462	 5.	265	

Divided	road	indicator	 0.119	 0	–	1		 0.325	
Number	 of	 signalized	
intersections	 2.238	 0	–	14		 2.033	

Principal	 road	 indicator	 (1	 if	
principal,	0	if	minor)	 0.722	 0	–	1		 0.449	

Ln	(county	population)	 12.652	 10.243	 –	
14.058	 1.123	

Total	shoulder	width	(feet)	 2.67	 0	–	26		 6.610	
Number	 of	 sign-controlled	
intersections	 5.845	 0	–	23		 3.279	

Area	 indicator	 (1	 if	 the	
segment	 is	 located	 in	 a	 rural	
area,	0	in	an	urban	area)	

0.058	 0	–	1		 0.234	

International	roughness	index,	
IRI	 (1	 if	 the	 IRI	 reading	 is	
greater	than	95	and	less	than	
or	equal	to	170,	otherwise	0)	

0.386	 0	–	1		 0.488	

International	roughness	index,	
IRI	 (1	 if	 the	 IRI	 reading	 is	
greater	than	170,	otherwise	0)	

0.469	 0	–	1		 0.500	

	
4. Results	and	discussion	

This	study	models	FI	and	PDO	crashes	on	multilane	arterial	
segments	 with	 a	 large	 number	 of	 intersections,	 which	 are	
typically	associated	with	higher	crash	rates,	as	con@irmed	in	
Figure	2	through	Figure	4.	Notably,	overdispersion	is	evident,	
with	variances	signi@icantly	exceeding	the	means,	suggesting	
that	the	negative	binomial	model	is	a	better	@it	for	these	data,	
according	to	the	work	reported	by	Mannering	et	al.	[25].	As	
outlined	in	the	methodology,	two	univariate	models	for	FI	and	
PDO	 crashes	 and	 a	 multivariate	 model	 were	 constructed.	
Initially,	intercept-only	models	for	FI	and	PDO	crashes	yielded	
deviances	of	1,757	and	2,253,	respectively,	with	a	combined	
sum	of	4,010,	which	was	similar	to	the	deviance	produced	by	
the	 multivariate	 intercept-only	 model.	 Adjustments	 to	 the	
intercepts,	as	detailed	in	Sections	2.1	and	2.2,	led	to	deviance	
reductions	of	42	for	the	univariate	models	and	357.2	for	the	
multivariate	model.	Explanatory	variables	from		
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Table	1	were	sequentially	introduced,	assessed,	and	selected	
using	 the	 likelihood	 ratio	 test;	 signi@icant	 variables	 were	
retained,	 and	non-signi@icant	 ones	were	 excluded.	 The	 @inal	

models,	detailed	 in	Tables	2	and	3,	 contain	eight	signi@icant	
variables	for	FI	crashes	and	@ive	signi@icant	variables	for	PDO	
crashes.	

	

Table	2:	Results	of	the	univariate	model	estimations	for	FI	and	PDO	crashes	

Model	 FI	 PDO	
Fixed	parameter	 Estimate	 Std.	error	 Z-stat	 Estimate	 Std.	error	 Z-stat	
Intercept	 −13.572	 1.202	 −11.288	 −8.400	 1.045	 −8.039	
Ln	(AADT)	 1.201	 0.111	 10.806	 0.978	 0.099	 9.853	
Ln	(segment	length)	 0.839	 0.113	 7.449	 0.532	 0.075	 7.075	
Number	of	lanes	 0.275	 0.119	 2.315	 -	 -	 -	
Intersection	density	
(intersections/mile)	 0.028	 0.013	 2.186	 -	 -	 -	

Divided	road	indicator	 −0.410	 0.145	 −2.822	 −0.422	 0.142	 −2.967	
Number	of	signalized	
intersections	 0.101	 0.025	 4.027	 0.187	 0.025	 7.517	

Principal	road	indicator	 −0.348	 0.103	 −3.370	 -	 -	 -	
Ln	(county	population)	 0.208	 0.045	 4.612	 0.113	 0.047	 2.425	
Random	parameter	 	 	 	 	 	 	
Standard	deviation	of	the	
intercept	
(negative	sign	percentages)	

0.222	
(~100%)	 0.057	 3.91	 0.348	

(~100%)	 0.056	 6.248	

Goodness-of-3it	measure	 	 	 	 	 	 	
Deviance	 1466	 1969.7	
Degrees	of	freedom	 11	 8	
AIC	 1488.0	 1985.7	
BIC	 1527.9	 2014.7	

FI,	 fatal	 and	 injury;	 PDO,	 property	 damage	 only;	 AADT,	
average	 annual	 daily	 traf@ic;	 AIC,	 Akaike’s	 information	
criterion;	BIC,	Bayesian	information	criterion	

	

	
Table	 2	 indicates	 that	 the	 intercepts	 for	 both	 univariate	
models—FI	and	PDO—signi@icantly	vary	across	state	routes	
and	are	normally	distributed,	with	a	mean	of	0.	The	standard	
deviations	are	0.222	for	the	FI	model	and	0.348	for	the	PDO	
model.	Error!	Not	a	valid	bookmark	self-reference.	shows	
that	both	intercepts	for	FI	and	PDO	crashes	exhibit	signi@icant	
variations	across	segments	within	routes	and	across	routes,	
as	determined	using	Equations	(7)	and	(8).	This	indicates	that	
the	deviations	of	the	intercepts	at	the	second	and	third	levels	
are	 signi@icant,	 with	 means	 of	 0,	 and	 the	 four	 standard	
deviation	values	are	listed	in	Error!	Not	a	valid	bookmark	
self-reference..	 Moreover,	 there	 is	 a	 signi@icant	 correlation	
between	the	random	parameters	for	FI	and	PDO	at	both	levels,	
suggesting	that	segments	prone	to	FI	crashes	are	also	likely	to	
be	associated	with	PDO	crashes.	These	@indings	are	consistent	

with	 the	 research	 conducted	 by	 [23,24],	 who	 identi@ied	
signi@icant	variations	across	corridors	and	state	routes.	Table	
4	presents	a	comparison	between	the	two	univariate	models	
and	 the	multivariate	model,	 as	 speci@ied	 in	Section	2.3.	The	
multivariate	model	signi@icantly	outperformed	the	univariate	
models	in	terms	of	three	@itness	measures,	namely	deviance,	
AIC,	and	BIC,	showing	a	strong	reduction	of	143	in	deviance.	
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Table	3:	Results	of	the	multivariate	model	estimations	for	FI	and	PDO	crashes	
Model	 FI	 PDO	

Fixed	parameter	 Estimate	 Std.	error	 Z-stat	 Estimate	 Std.	error	 Z-stat	

Intercept	 −12.875	 1.099	 −11.720	 −8.512	 1.072	 −7.941	

Ln	(AADT)	 1.128				 0.105	 10.767	 0.994	 0.101	 9.799	

Ln	(segment	length)	 0.827			 0.096	 8.595	 0.571	 0.077	 7.435	

Number	of	lanes	 0.187			 0.075	 2.512	 -	 -	 -	

Intersection	density	(intersections/mile)	 0.021			 0.009	 2.416	 -	 -	 -	

Divided	road	indicator	 −0.436			 0.141	 −3.088	 −0.517			 0.143	 −3.608	

Number	of	signalized	intersections	 0.120			 0.023	 5.209	 0.183	 0.023	 7.819	

Principal	road	indicator	 −0.228		 0.074	 −3.065	 -	 -	 -	

Ln	(county	population)	 0.223			 0.044	 5.089	 0.103	 0.048	 2.143	

Random	parameter	 	 	 	 	 	 	
Standard	 deviation	 of	 intercept	 at	 the	 second	 level	
(negative	sign	percentages)	

0.457	
(~100%)	 0.043	 10.542	 0.506	

(~100%)	 0.038	 13.264	

Correlation	 0.95	
Standard	 deviation	 of	 intercept	 at	 the	 second	 level	
(negative	sign	percentages)	

0.249	
(~100%)	 0.057	 4.335	 0.373	

(~100%)	 0.057	 6.535	

Correlation	 0.85	

Goodness-of-3it	measure	 	 	 	 	 	 	

Deviance	 3292.7	

Degrees	of	freedom	 22	

AIC	 3336.7	

BIC	 3431.6	

FI,	fatal	and	injury;	PDO,	property	damage	only;	AADT,	average	annual	daily	traf@ic;	AIC,	Akaike’s	information	criterion;	BIC,	Bayesian	
information	criterion	
Table	4:	Comparison	of	the	univariate	models	and	the	multivariate	model	

Model	 Univariate	 models	
	(Error!	Not	a	valid	result	for	table.)		

Multivariate	 model		
(Error!	Not	a	valid	result	for	table.)	

Goodness-of-3it	measure	 	 	 	 	 	 	
Deviance	 3435.7	 3292.7	
AIC	 3473.7	 3336.7	
BIC	 3555.7	 3431.6	
Degrees	of	freedom	 19	 22	
Likelihood	ratio	test	 	 	
Difference	in	degrees	of	freedom	 3	
Chi-squared	statistics	 143	
P-value	 <	0.0001	
Forecasting	accuracy	 	 	
RMSE	(in-sample,	2016)	 10.949	 2.119	
RMSE	(out-of-sample,	2017)	 11.017	 5.615	
AIC,	Akaike’s	information	criterion;	BIC,	Bayesian	information	criterion;	RMSE,	Root	mean	square	error	
	
The	univariate	models	and	the	multivariate	model	
predictions	were	evaluated	using	in-sample	and	out-of-
sample	data,	as	explained	in	Section	2.3.	The	2016	data	were	

used	to	train	the	models,	whereas	the	2017	data	were	used	
to	test	the	models	and	assess	their	predictions.	As	shown	in	
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Table	4,	the	RMSE	of	the	in-sample	data	is	lower	than	that	of	
the	out-of-sample	data,	which	 is	 logical	because	the	models	
were	trained	using	in-sample	data.	However,	the	multivariate	
model	 demonstrated	 superior	 predictive	 performance	
compared	 with	 the	 univariate	 models,	 as	 evidenced	 by	 a	
signi@icant	improvement	in	RMSE.	
Additionally,	 the	 predicted	 values	 were	 plotted	 versus	 the	
observed	values,	as	shown	in	Figure	5	and	Figure	6,	using	both	
in-sample	 and	 out-of-sample	 data	 for	 the	 univariate	 and	
multivariate	 models.	 A	 regression	 line	 was	 @itted	 for	 each	
dataset,	and	the	R-squared	values	were	computed.	Consistent	
results	were	 observed	 for	 the	 in-sample	 and	 out-of-sample	
data	in	the	univariate	and	multivariate	models.	The	regression	
lines	 are	 close	 to	 the	45°	 line,	 demonstrating	 the	 similarity	
between	the	predicted	and	observed	values.	However,	the	red	
lines	(2016	in-sample	data)	are	closer	to	the	45°	line	than	the	
blue	lines	(2017	out-of-sample	data),	which	is	logical	because	
the	models	were	trained	on	the	in-sample	data.	Furthermore,	
the	regression	lines	for	the	multivariate	model	are	closer	to	
the	 45°	 line	 than	 those	 for	 the	 univariate	 models.	 The	 R-
squared	values	indicate	how	much	variation	in	the	observed	
values	is	explained	by	the	predicted	values.	For	example,	the	
predicted	 values	 from	 the	 multivariate	 model	 explained	
~92%	of	the	variation	in	the	observed	values	for	the	out-of-
sample	data	from	2017,	as	shown	in	Figure	6.	These	results	
highlight	the	superior	performance	of	the	multivariate	model	
over	the	univariate	models.	
	

	
Figure	5:	Predicted	values	versus	observed	values	based	
on	the	univariate	models.	

	
Figure	6:	Predicted	values	versus	observed	values	based	
on	the	multivariate	model.	

There	 are	 eight	 signi@icant	 contributing	 variables	 for	 FI	
crashes	and	@ive	for	PDO	crashes,	as	presented	in	
.	 The	 results	 reveal	 that	 higher	 AADT	 and	 longer	 segment	
lengths	increase	the	number	of	both	FI	and	PDO	crashes,	as	
observed	in	previous	studies	[4,5,10,24].	The	number	of	lanes	
was	found	to	signi@icantly	contribute	to	FI	crashes	but	not	to	
PDO	 crashes.	 This	 @inding	 suggests	 that	 an	 increase	 in	 the	
number	 of	 lanes	 tends	 to	 cause	more	 FI	 crashes	 than	 PDO	
crashes	 on	 multilane	 arterial	 segments	 with	 numerous	
intersections.	Notably,	an	increase	in	intersection	density	(i.e.,	
intersections	 per	 mile)	 tends	 to	 signi@icantly	 increase	 FI	
crashes	but	not	PDO	crashes.	This	@inding	is	consistent	with	
previous	 studies	 [10,11]	 showing	 a	 similar	 impact	 on	 total	
crashes.	An	 increase	 in	 these	 factors	 leads	to	an	 increase	 in	
con@lict	 points,	 resulting	 in	 more	 severe	 crashes.	 For	 a	
continuous	 pattern	 with	 fewer	 con@lict	 points,	 divided	
segments	 tend	 to	 have	 fewer	 FI	 and	 PDO	 crashes	 than	
undivided	segments,	as	indicated	by	the	negative	sign	for	the	
divided	 road	 indicator	 coef@icient	 and	 con@irmed	 by	 a	
previous	 study	 [10].	 More	 signalized	 intersections	 per	
segment,	however,	lead	to	more	FI	and	PDO	crashes,	although	
a	 higher	 number	 of	 sign-controlled	 intersections	 exerts	 no	
signi@icant	 effect	 on	FI	 or	PDO	 crashes;	 the	only	 factor	 that	
matters	 for	 FI	 crashes	 is	 the	 intersection	 density.	 Principal	
multilane	 arterial	 segments	 tend	 to	 have	 fewer	 FI	 crashes	
than	 minor	 multilane	 arterial	 segments,	 but	 this	 does	 not	
signi@icantly	 affect	 PDO	 crashes.	 This	 result	 contradicts	 the	
observations	 reported	 by	 [11],	 who	 found	 that	 higher	
segment	 classes	 were	 associated	 with	 more	 crashes	 than	
lower	segment	classes.	A	possible	reason	for	this	discrepancy	
is	 the	 higher	 accessibility	 of	 minor	 multilane	 arterial	
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segments	 than	 of	 principal	 multilane	 arterial	 segments,	
leading	to	more	con@lict	points	for	the	former	than	the	latter.	
Moreover,	 in	 the	present	study,	 the	natural	 logarithm	of	 the	
county	population	was	found	to	be	a	signi@icant	contributing	
factor	to	both	FI	and	PDO	crashes.		
	
Table	5:	Average	marginal	effects	

Variables	
Univariate	models	 Multivariate	model	

FI	 PDO	 FI	 PDO	

Ln	(AADT)	 10.064	 20.90	 9.320	 20.834	
Ln	 (segment	
length)	 7.026	 11.36	 6.835	 11.962	

Number	of	lanes	 2.300	 -	 1.546	 -	
Intersection	
density	 0.232	 -	 0.176	 -	

Divided	 road	
indicator	 −2.968	 −7.74	 −3.088	 −9.049	

Number	 of	
signalized	
intersections	

0.849	 4	 0.992	 3.840	

Arterial	 type	
indicator	 −3.230	 -	 −2.009	 -	

Ln	 (county	
population)	 1.740	 2.42	 1.842	 2.154	

	
Table	5	 lists	 the	 average	marginal	 effects	 for	 the	univariate	
models	and	the	multivariate	model.	The	values	shown	in	this	
table	represent	the	average	increases	or	decreases	in	crashes	
for	 each	 unit	 increase	 in	 that	 variable.	 This	 table	 provides	
several	useful	interpretations.	For	instance,	an	additional	lane	
in	 multilane	 arterial	 segments	 with	 large	 numbers	 of	
intersections	is	expected	to	increase	FI	crash	counts	by	1.546	
crashes.	 Additionally,	 divided	 segments	 are	 expected	 to	
decrease	FI	and	PDO	crash	counts	by	approximately	3	and	9	
crashes,	 respectively,	 and	 an	 additional	 signalized	
intersection	per	segment	is	expected	to	increase	FI	and	PDO	
crash	 counts	 by	 0.992	 and	 3.840	 crashes,	 respectively.	
Ultimately,	the	@indings	in	this	study	may	be	instrumental	for	
safety	 analysts	 and	 decision-makers,	 providing	 valuable	
insights	into	the	factors	that	contribute	to	FI	and	PDO	crashes	
on	multilane	arterial	segments	with	numerous	intersections.	
	
5. Conclusions	

This	study	demonstrates	the	effectiveness	of	multivariate	
multilevel	models	 in	predicting	fatal	and	injury	(FI)	crashes	
and	 property	 damage-only	 (PDO)	 crashes	 on	 multilane	
arterial	 segments	with	 numerous	 intersections.	 The	 results	
highlight	 the	 model's	 superiority	 in	 performance	 and	 its	
ability	 to	 provide	 actionable	 insights	 for	 improving	 road	
safety.	

• The	 multivariate	 three-level	 model	 signi@icantly	
outperformed	the	univariate	two-level	models,	reducing	
the	root	mean	square	error	(RMSE)	from	11.017	to	5.615	
and	explaining	92%	of	the	variance	in	the	out-of-sample	
2017	data.	

• Eight	signi@icant	variables	were	identi@ied	for	FI	crashes,	
including	 the	natural	 logarithms	of	AADT	and	segment	
length,	 number	 of	 lanes,	 intersection	 density,	 divided	
road	 indicator,	 number	 of	 signalized	 intersections,	
arterial	 type	 indicator,	and	natural	 logarithm	of	county	
population.	

• Divided	 roadways	were	 found	 to	 reduce	 FI	 crashes	 by	
approximately	3	crashes	and	PDO	crashes	by	9	crashes	
per	segment.	

• An	 additional	 lane	 increased	 FI	 crash	 counts	 by	 1.546,	
while	signalized	intersections	raised	FI	and	PDO	crashes	
by	0.992	and	3.840	crashes	per	segment,	respectively.	

• Strong	 correlations	 between	 FI	 and	 PDO	 crashes	 and	
signi@icant	variations	across	state	routes	were	observed,	
further	emphasizing	the	complexity	of	crash	dynamics.	

The	 @indings	 provide	 a	 robust	 foundation	 for	
implementing	 targeted	 interventions	 to	 reduce	 crashes	
and	improve	road	safety.	Future	research	should	explore	
additional	 variables,	 such	 as	 economic	 indicators	 or	
weather	 patterns,	 to	 enhance	 predictive	 accuracy	 and	
deepen	the	understanding	of	factors	contributing	to	crash	
occurrences.	 This	 research	 reinforces	 the	 value	 of	
multilevel	modeling	in	traf@ic	safety	analysis	and	offers	a	
strong	framework	for	guiding	future	studies	and	decision-
making.	
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